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a b s t r a c t

Vascular diseases are a common cause of death, particularly in developed countries. Computerized image

analysis tools play a potentially important role in diagnosing and quantifying vascular pathologies. Given the

size and complexity of modern angiographic data acquisition, fast, automatic and accurate vascular segmen-

tation is a challenging task.

In this paper we introduce a fully automatic high-speed vascular skeleton extraction algorithm that is in-

tended as a first step in a complete vascular tree segmentation program. The method takes a 3D unprocessed

Computed Tomography Angiography (CTA) scan as input and produces a graph in which the nodes are cen-

trally located artery voxels and the edges represent connections between them. The algorithm works in two

passes where the first pass is designed to extract the skeleton of large arteries and the second pass focuses

on smaller vascular structures. Each pass consists of three main steps. The first step sets proper parameters

automatically using Gaussian curve fitting. In the second step different filters are applied to detect voxels –

nodes – that are part of arteries. In the last step the nodes are connected in order to obtain a continuous

centerline tree for the entire vasculature. Structures found, that do not belong to the arteries, are removed in

a final anatomy-based analysis. The proposed method is computationally efficient with an average execution

time of 29 s and has been tested on a set of CTA scans of the lower limbs achieving an average overlap rate of

97% and an average detection rate of 71%.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the immense impact of arterial disease on public health,

a large proportion of clinical medical imaging procedures are de-

voted to the imaging of blood vessels. The trend with minimally in-

vasive therapeutic procedures supplanting open surgery has greatly

increased the demand for non-invasive vascular imaging for treat-

ment planning. Currently, Computed Tomography Angiography and

Magnetic Resonance Angiography (MRA) are the most popular non-

invasive techniques for accurate morphological imaging of arteries.

With the introduction of new Computed Tomography (CT) hardware

with up to 320 detector rings, the spatial resolution has increased,

and modern CTA technique has shown good agreement with invasive

methods even in the coronaries, which offer special challenges due to
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their motion [1]. Increased resolution, on the other hand, puts higher

demands on the performance of the software processing continually

increasing volumes of image data.

The increasing proportion of endovascular treatment for various

arterial diseases – aneurysms and dissections as well as atheroscle-

rotic stenoses [18] – has led to a growing need for accurate methods

to identify and measure the centerline of arteries, as this is used for

selecting suitable stents and placing them appropriately. In addition,

the centerline is useful for visualizing stenoses with curved planar re-

formatting (CPR) [21]. Segmentation of tubular structures, which is a

specific segmentation challenge, can be facilitated and accelerated by

first identifying the centerlines. Therefore, there is a need for fast vas-

cular centerline tree extraction algorithms. In this paper, we present

such an algorithm. The proposed algorithm is intended as part of a

complete arterial tree segmentation, where the vascular centerline

is used as seed. The overall goal is to obtain a precise segmentation

with enough coverage and with a computation time short enough to

permit interactive clinical use.

http://dx.doi.org/10.1016/j.patrec.2015.06.024
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Finding the centerlines of vessels can be seen as a special case

of image skeleton extraction algorithms. An image skeleton should

fulfil the criteria of being a subset of the original object, thin - one

voxel wide, being topologically equivalent to the object and allowing

reconstruction of the object [13].

Our proposed skeleton extraction method is based on the concept

of reducing the dimensionality of the problem before performing the

actual analysis [8,9]. Although the input data is a 3D volume, the

problem is simplified into a set of 1D processes. The resulting cen-

terline tree is thin, roughly centrally located and has the same topol-

ogy as the vascular tree. It is a subset of the original object and it

is possible to reconstruct the vascular tree from it. It thus fulfils the

general criteria of being a skeleton as described above. The recon-

struction method, however, has to be more advanced than a simple

distance-based expansion in order to reproduce an accurate segmen-

tation of the vascular tree. For this purpose, we are using a recon-

struction method that combines level sets with an implicit 3D model

of the vessels [22]. That method takes an approximate centerline tree

as input, generates a 3D vessel model from it and uses it to guide

the level set propagation. The result is a segmented vasculature with

subpixel precision.

The whole concept of vascular segmentation based on vascu-

lar skeleton extraction and level set propagation was experimen-

tally proven in [22]. However, in that paper the vascular skeleton

extraction was based on a semi-automatic, relatively time consum-

ing approach. In this paper, we focus on the vascular skeleton ex-

traction part, showing how it can be made fully automatic and run

at speeds compatible with interactive exploration of the volume

images.

2. Previous work

Numerous methods have been proposed for vascular segmenta-

tion. Since no general purpose segmentation method is suitable for all

applications, this problem still attracts interest of many researchers.

Roughly, the approaches can be classified [20] as either skeleton-

based (extracting vessel skeleton) or non-skeleton-based (extracting

vessel walls). For vascular skeleton extraction, there are, in principle,

two approaches. The first approach assumes pre-extracted vascular

surface representation as an input, the second one finds centerlines

directly from the MRI or CT intensity images.

This section focuses on various methods for skeleton extraction

directly from CTA images with more attention to algorithms that are

able to extract the whole vascular centerline tree or give information

about the execution time. Detailed surveys on different vessel seg-

mentation algorithms can be found in [12,14].

Most centerline extraction algorithms are semi-automatic, based

on one or more user-defined seed-points and their propagation.

Particularly popular are minimal-path approaches identifying the

minimum-cost path as the vessel centerline. The cost function can be

efficiently calculated by using various operators such as medialness

filters [2,5,10], vesselness filters [7], or optimally oriented flux [4].

In a coarse-to-fine approach presented by [6], Dijkstra’s shortest

path algorithm creates an initial coarse centerline, which is thereafter

refined by an active contour model combined with polyhedra placed

along the model. Experimental results for a real CT dataset with 512 ×
512 × 386 voxels show that, depending on the number of polyhedra

surface points, the centerline extraction can take 2.3–31.4 s for 12–

272 surface points respectively. However, the length of the extracted

centerline is less than 100 voxels.

Work presented by [15] extends the shortest path computation

using one additional dimension – the vessel radius. The resulting

paths are better centered and the vessel surface can be directly ex-

tracted without any post-processing, nevertheless the computation

time is a drawback. For a 3-D CT image of the size 110 × 90 × 80

voxels, the aorta centerline extraction “takes less than 2 min”.

Another work is based on intensity ridge traversal [2] and states

an execution time of 15 min to process an intracranial MRA dataset.

In contrast to techniques that can only detect a single centerline,

some algorithms can propagate outward from only one seed point

and detect multi-branch centerlines simultaneously [10,16]. Gülsün

and collaborators have tested their method on coronary artery CTA

data where the full coronary artery trees were extracted in 21 s in

average.

Wang and Smedby [23] proposed a coronary artery segmentation

and skeletonization algorithm based on a fuzzy connectedness tree.

The algorithm also works well outside the coronary region, and with

very limited user interaction it is possible to extract the full body

vascular skeleton. This algorithm is used to evaluate our proposed

method.

This brief review of previous work done in vascular skeleton ex-

traction shows the need for a method able to extract a whole-body

centerline tree that is fast enough to permit interactive clinical use.

3. Proposed method

The proposed method for fast extraction of the vessel centerline

tree takes a 3D unprocessed CTA scan as input. The output is a graph

where the nodes are centrally located artery voxels found by a set

of criteria and the edges represent the connections between them.

The algorithm consists of three main parts that are repeated in two

passes. An outline of the proposed algorithm is presented in Fig. 1.

During the first pass, the algorithm focuses on extracting the cen-

terline of large arteries, and therefore only reliable parts of the artery

structure are detected. The output of the first pass is refined by an

anatomy-based analysis which removes structures that do not belong

to the arteries. During the second pass, additional finer structures are

added to the graph.

Each one of these two passes consists of the same three main

steps. The first step automatically selects parameters from the inten-

sity histogram of the data. The second step detects centrally located

voxels that are part of the arteries. Finally, these centrally located vox-

els are connected as nodes into a graph structure, corresponding to

the vascular tree.

3.1. Parameter selection

Parameters used in the proposed method can be divided into two

groups. The fixed parameter group contains parameters that need to

be determined once and are based on vascular morphology. The sec-

ond group are changeable parameters, consisting of intensity ranges

for relevant tissues such as fat [θ f

low
, θ f

high
], muscles [θm

low
, θm

high
] and

blood [θb
low

, θb
high

]. These intensities depend on various factors and

have to be adapted for each patient separately. We propose a way to

set them automatically.

3.1.1. Fixed parameters

The group of fixed parameters consists of

[min_radius, max_radius], cutting_thresh, short_graph_thresh and

gradient_thresh. By changing [min_radius, max_radius], we select

the size of the arteries we aim to detect at each level. At the rough

level, we focus on arteries having a radius smaller than 25 mm

and larger than 2 mm, as arterial diameters above 50 mm are only

found in aneurysms. At the fine level, we aim to detect arteries with

a radius smaller than 2.5 mm. The lower radius limit in this case

is limited by the size of the voxel in the database. However, these

values can be modified depending on the requested artery size. With

the cutting_thresh parameter, we influence the threshold for cutting

off very short branches. In this paper, we are using cutting_thresh

equal to 5 times the radius of the artery at a bifurcation point. This

threshold permits the removal of most of the non-arterial branches

which originate from noise or from nodes detected very close to
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