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In this paper, we consider approximation of Euclidean metrics by octagonal distances defined by periodic 

neighborhood sequences in arbitrary dimension. We derive an expression for maximum relative error 

(MRE) of an octagonal distance approximated by a weighted t -cost distance (WtD) function, with respect 

to the Euclidean metric in n -dimensional space. For this, we have used a general expression of MRE re- 

ported previously for a class of distances, in the form of a linear combination of weighted t -cost (WtD) 

and weighted (or chamfering) distances (CWD) and derived the expressions for specific cases of WtDs 

and CWDs. Further, this has also been applied to obtain theoretical expressions of MRE for m -neighbor 

distances (mND) in arbitrary dimension, and it improves the previously reported results regarding opti- 

mum value of m in an n -dimensional space. We also considered the adjustment of MRE values choosing 

an optimum scale factor. Computing theoretical values of scale adjusted MRE, we have reported good oc- 

tagonal distances for approximating Euclidean metrics in different dimensional spaces. Previously, only a 

few such distances were reported for 2-D and 3-D spaces. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Since the introduction of octagonal distances (OD) [21] , they 

have drawn attention from several researchers [8,11,27,28] for var- 

ious reasons. First and foremost, the shape of the disks in 2D is 

found to be in the form of an octagon, while disks of conventional 

cityblock and chessboard distances are diamonds and squares, re- 

spectively. The shape of an octagon is closer to the circular shape 

of a disk in the 2-D Euclidean space. Moreover, depending upon 

the underlying definition of a neighborhood sequence in con- 

structing a path, features of octagons may vary. Exploiting their 

geometric properties, good octagonal distances were recommended 

previously [7,18] for approximating an Euclidean metric. The other 

interesting property of octagonal distances is that, they are truly 

digital distances assuming non-negative integral values only. Last 

but not the least, distance transforms of ODs can be computed us- 

ing chamfering. This property makes them also alternative choices 

over some of the CWDs reported [2–5] as good candidates for ap- 

proximating Euclidean distances. 
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From its early days, there have been continual effort s in finding 

good ODs for approximating Euclidean metrics [7,12,18] . However, 

the attempts were mostly restricted to 2D and 3D. In [21] , it is 

shown that a generalized octagonal distance in 2D defined by a pe- 

riodic neighborhood sequence of ω 1 cityblock motions followed by 

ω 2 chessboard motions, becomes a good candidate for approximat- 

ing Euclidean metric, if 2 ω 2 / ω 1 is as close as possible to 
√ 

2 . Later 

in an excellent treatise on the error analysis of simple octagonal 

distances in 2D, Das [12] provided theoretical expression of differ- 

ent error measures on approximating Euclidean metric, and sug- 

gested a list of good ODs in this regard. However, similar analysis 

in an arbitrary dimension ( > 2) is not yet reported, and remains an 

open problem (as commented in [12] ) till date. This work attempts 

to fill that gap, though it is restricted to the analysis of maximum 

relative error (MRE) 1 . 

Following a different approach, called geometric approach , in 

[18] a list of 2D and 3D ODs is recommended considering the 

closeness of different attributes of digital circles and digital spheres 

of ODs to their Euclidean counter parts. Previous to this work 

Danielsson [7] also adopted a similar approach to report a few 

good ODs in 3D. However, till date no work on suggesting such 

distances in a dimension higher than three has been reported. In 

1 Called direct relative error in [12] . 

http://dx.doi.org/10.1016/j.patrec.2016.02.012 

0167-8655/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.patrec.2016.02.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.02.012&domain=pdf
mailto:jay@cse.iitkgp.ernet.in
mailto:jmukherjee2000@gmail.com
http://dx.doi.org/10.1016/j.patrec.2016.02.012


J. Mukherjee / Pattern Recognition Letters 75 (2016) 16–23 17 

this work, we suggested a few such distances in higher dimen- 

sional spaces based on the error analysis. In our approach, we have 

exploited the geometry of hyperspheres in deriving the expression 

of MRE. The detailed analysis was already reported in [17] , where 

an expression for MRE of a linear combination of WtD and CWD is 

derived. As ODs can very nearly be approximated by WtDs [14] , the 

same analysis is also applicable in this case. In this work, specific 

simplified expressions of MREs for ODs defined by periodic neigh- 

borhood sequences, and CWDs are derived. They are used for ob- 

taining good candidates of Euclidean approximation. We have also 

considered the fact that given a distance function, scaling may fur- 

ther improve the MRE value. For this we have theoretically derived 

an optimum scale factor for a distance function, and reported the 

scale adjusted MRE values. 

Further, we have also applied this analysis for finding MRE val- 

ues of m -neighbor distances (mND) [9] , as these distances are spe- 

cial instances in the class of ODs. We obtained the theoretical ex- 

pression for MRE for an mND in arbitrary dimension. This result 

is reported for the first time in this work. Earlier in [10] , an er- 

ror analysis on mNDs in arbitrary dimension was reported. In that 

work, though the authors did not provide any precise analytical ex- 

pression of MRE, they reported its approximate bounds, and sug- 

gested a set of optimal mNDs in higher dimensional spaces ( ≤40). 

Using the theoretical expression of MRE, we have obtained the 

same results in most cases reported by them [10] . Due to the pre- 

ciseness of the derived expression, in some cases, we could better 

their estimates of the optimal m . 

Though there is no prior work on error analysis of octago- 

nal distances in dimensions higher than three, there are a few 

works reported for other distance families including their analysis 

in lower dimensional spaces such as in 2D, 3D and 4D. Borgefors 

carried out this analysis in 2D [2] , 3D [3,4] and 4D [5] for CWDs, 

and suggested a few good distances in that family for approximat- 

ing Euclidean metrics. In an interesting work [22] , a distance func- 

tion is proposed by constructing paths of varying neighborhoods 

with weighted distances among the neighbors. There are a few 

good distances in this class proposed for the purpose of approx- 

imation. However, this analysis was restricted to 2D. In a different 

algebraic form, [1] also studied a class of weighted distances, and 

provided an optimal distance for approximating Euclidean norms 

in arbitrary dimensions. In [16] , following a geometric approach 

good CWDs are obtained in 2D, 3D and 4D. More recently lin- 

ear combination of different digital distances [15] are explored for 

the same purpose in arbitrary dimension. In [15] , we have shown 

how hyperspheres could be used for computing MREs and reported 

MREs of a few distances for approximating Euclidean metric in 

arbitrary dimensions ( ≤10). The analysis is further extended for 

the linear combination of WtD and CWD (called WtCWD) in [17] , 

and a very good approximation of Euclidean metric is reported in 

higher dimensional spaces ( ≤100). In this work, we restrict our- 

selves to integral distance functions, involving ODs defined by pe- 

riodic neighborhood sequences, and CWDs with integral weights. 

We may also note that for the purpose of Euclidean approxima- 

tion, distances in a non-uniform grid in 2-D and 3-D [23–26] are 

also explored. In this study, we are excluding those classes of 

distances. 

2. Octagonal distances (OD) 

In this paper we consider only regular tessellations of n -D 

space. Let the space be represented by Z n , where Z is the set of in- 

tegers. A point u ∈ Z n is also denoted as u = (u (1) , u (2) , . . . , u (n )) . 

We also denote the zero vector (0 , 0 , . . . , 0 ) as 0 . We should note 

here that for simplifying the notation, we consider only distances 

measured from the origin of the space, and denote a distance value 

at u as d ( u ). As all the distance functions considered in this work 

are translation invariant, we can express the distance between two 

points x and y in this form (i.e. d( y − x )) without loss of generality. 

We provide a brief review of the definitions and related properties 

of ODs below. 

In Z 2 , there are two types of neighborhood definitions, namely 

O(1) (or type-1) and O(2) (or type-2) neighbors. For type-1(2) 

neighbors, the coordinates can differ by unity at most in 1(2) posi- 

tion. The OD is defined by constructing paths between two points 

using an alternate sequence of type-1 and type-2 neighbors in 2D. 

It is the length of the shortest path between two points formed us- 

ing such a predefined neighborhood sequence B . For a finite B , the 

sequence is extended periodically. For example, with B = { 1 , 1 , 2 } , 
the paths between any two points are formed using a sequence of 

neighborhood types of 1, 1, 2, 1, 1, . . . , and so on. It can be shown 

that this distance is a metric, and its disks resemble the shape of 

an octagon. In [11] , this concept is generalized to n -D by accom- 

modating arbitrary sequence of m -neighborhoods (1 ≤ m ≤ n ) in 

n -D. 

As there are n neighborhood types in n -D, any arbi- 

trary sequence of neighborhood types is denoted as B = 

{ b(1) , b(2) . . . , b(m ) , . . . } , where ∀ i, b(i ) ∈ { 1 , 2 , . . . , n } . As in 2D, in 

this case also, a finite B represents a cyclic sequence with a period 

p = | B | , and it is represented as B = { b(1) , b(2) , . . . , b(p) } . From 

[8] , we find that if B is a sorted sequence in nondecreasing order 

of the neighborhood types, the corresponding OD is a metric 2 . In 

this work, we consider only ODs defined by sorted neighborhood 

sequences 3 . For representing a sorted neighborhood sequence in 

n -D, we also use a fixed vector representation � of dimension n , 

such that the i th component ω i denotes the number of times the 

type- i neighborhood occurs in the sequence B . For example in 3-D, 

B = { 1 , 1 , 3 , 3 , 3 } can be equivalently represented by � = { 2 , 0 , 3 } . 
With this representation, the length of the period of the sequence 

can be computed as p = 

∑ n 
i =0 ω i . It may be noted that m -neighbor 

distances (mND) [9] are special cases of ODs, where the neigh- 

borhood sequence B (= { m } ) consists of only the type- m neighbor- 

hood. 

From [8] , a closed form expression for an octagonal distance 

OD 

n ( u ; B ) is given below. 

Lemma 1. Given a neighborhood sequence B = { b(1) , b(2) , . . . , b(p) } 
in n-D, the generalized octagonal distance OD 

n ( u ; B ) is given by the 

following expression. 

OD 

n ( u ; B ) = 

n 
max 

t=1 

{
p 

⌊
D 

n 
t ( u ) 

f t (p) 

⌋
+ h (z t ; B t ) 

}
(1) 

where B t = { b t (1) , b t (2) , . . . , b t (p) } such that b t (i ) = min { b(i ) , t} . 
Other terms are defined as follows: 

f t ( j) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 j = 0 , 

j ∑ 

i =1 

b t (i ) , for 1 ≤ j ≤ p. 
(2) 

z t = D 

n 
t ( u ) mod f t (p) , (3) 

and, 

h (z t ; B t ) = min { k | f t (k ) ≥ z t } (4) 

2 There are other unsorted neighborhood sequences which may define a metric. 

For example, in [19] , it is shown that in 2D, an OD defined by a neighborhood 

sequence becomes metric, if for any integer m , the sum of the first m values is 

not greater than the sum of m consecutive values anywhere in the sequence. 
3 Though we have reported our results with sorted sequences for enforcing the 

metricity properties of distance functions defined by them. Our analysis is also ap- 

plicable if an OD defined by any arbitrary periodic neighborhood sequence is a met- 

ric. 



Download English Version:

https://daneshyari.com/en/article/6941035

Download Persian Version:

https://daneshyari.com/article/6941035

Daneshyari.com

https://daneshyari.com/en/article/6941035
https://daneshyari.com/article/6941035
https://daneshyari.com

