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a b s t r a c t 

In this paper, we present a perceptron-based algorithm and have developed a dual formulation to solve 

the nonlinear structured prediction problem, which we called Dual Structured Incremental Margin Algo- 

rithm (DSIMA). The proposed formulation allows the introduction of kernel functions enabling the effi- 

cient solution of nonlinear problems. In order to verify the correctness and applicability of the algorithm, 

we consider an inverse approach to the path planning problem. The problem mapped on a grid environ- 

ment can be solved by a search process that essentially depends on the definition of the transition costs 

between states. In this context, we develop and apply a learning algorithm that is able to perform the 

reverse path, i.e., the prediction of these costs in a direct space for the linear form. However, considering 

the nonlinear form, the problem is solved in a space of high dimension and where it is possible to learn a 

path instead of the transition costs. This learning problem is usually formulated as a convex optimization 

problem of maximum margin. Several tests to solve the costs prediction problem were carried out and 

the results compared to other structured prediction techniques. The proposed algorithm demonstrated 

greater efficiency in terms of computational effort and quality of prediction. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

One of the fundamental problems in learning theory is the con- 

struction of classifiers that are capable of efficient generalization 

performance. Meanwhile, structured learning has recently gained 

attention within the machine learning community as a tractable 

method of solving several learning problems, e.g., the detection 

and classification of objects for video scenes [13] , for learning a 

policy from demonstration [6] or for learning the transition costs 

in the inverse path planning problem [8] . 

However, because of scalability, current methods are limited in 

terms of memory requirement in the dual space with an explosive 

number of variables and in the primal space, with the dependence 

on the domain. Therefore, the main objective of this paper is to 

present the development of the DSIMA, demonstrating its appli- 

cability and efficiency in relation to their respective examples and 

without the mentioned limitations. 

The structured prediction problem is formulated as a convex 

optimization problem of maximum margin and its structure is 

very similar to the formulation of multi-class support vector ma- 

chines [16] . As a solution method, we proposed previously in 

✩ This paper has been recommended for acceptance by Dr. G. Moser. 
∗ Corresponding author. fax: + 55 32 2102 3481 . 

E-mail address: cchborges@gmail.com , cchborges@ice.ufjf.br (C.C.H. Borges). 

Coelho et al. [2] a relaxation procedure based on a primal formula- 

tion of the perceptron model, called Structured Incremental Margin 

Algorithm, efficient at solving linearly separable problems. How- 

ever, if we use a linear algorithm to solve a nonlinearly separable 

classification problem, we cannot obtain a linear hypothesis that 

produces the correct separation of two classes in the input space. 

Also, in nonlinear structured prediction problems, we cannot ob- 

tain a hyperplane where the computed distance in relation to the 

expert’s choices is greater than or equal to the computed distance 

of any other choice. In both cases, this results in obtaining negative 

margins. 

There are two common approaches to deal with nonlinearity. 

The first, proposed by Taskar [11] , consists in obtaining the dual 

of the maximum margin structured prediction problem with the 

use of kernel functions. To solve this problem the author uses an 

adaptation of the Sequential Minimal Optimization (SMO) method 

[7] . The formulation leads to the solution of a quadratic program- 

ming problem with a large number of variables in the dual space. 

The second, proposed by Ratliff et al. [9] , considers the primal for- 

mulation of the problem and adopts an expanded set of features 

that increases the size of the direct space. This solution employs 

a technique known as Structured Boosting [5] . In that work, the 

authors developed the MMPBoost algorithm, which is applied to 

solve a nonlinear inverse path planning problem. This construction 

technique promotes an ad hoc solution, being dependent on the 
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application domain. Our proposal, the DSIMA, avoids an excessive 

number of variables as well as the dependence on the application 

domain. 

The inverse path planning problem was also used to test the 

proposed algorithm. The design or layout of paths is only possible 

from the prior knowledge of the cost matrix, which reflects the 

transition costs. The approach presented provides a solution to the 

inverse problem: the discovery of the cost matrix from a set of 

samples planned by an expert. In these problems, the major diffi- 

culty is the definition of costs in a precise way for different types 

of terrains on the maps reflecting the choice of a set of features. 

These costs need to be known and reliable. This paper indicates 

how to predict these costs and new paths in nonlinear problems. 

In this case, only a nonlinear function of the set of features could 

provide a learning strategy. 

The problem discussed here has a direct relationship with in- 

verse reinforcement learning, proposed by Russell [10] . In both 

problems, the goal is to learn a policy or trajectory defined by a 

reward function associated with the execution of a task using a 

set of observations defined by an expert. The basic principle is to 

guarantee that the expert acts optimally for an unknown reward 

function. This is the opposite of the direct problem of reinforce- 

ment learning, where the reward function or immediate return of 

the actions is known and the goal is the definition of a maximiza- 

tion policy of the cumulative returns. 

In the linear case, we can learn the cost values that subse- 

quently allow the definition of an optimal policy in new scenarios 

with the aid of an optimization algorithm. But, in the nonlinear 

case, we are able to predict only complete new paths in accor- 

dance with the expert strategy. This is due to the use of kernel 

functions. Also, unlike what occurs in the inverse reinforcement 

learning problem, where the direct reinforcement learning problem 

is repeatedly solved, this inference process is based only on the ob- 

servation of the samples given. The work of Klein et al. [4] presents 

a similar approach for solving the inverse problem of reinforce- 

ment learning associated with structured classification. The paper 

reflects with more accuracy the maximization of the margin be- 

tween the best policy obtained within an updated estimate and 

the policy implemented by the expert. 

In order to evaluate the efficiency of the proposed algo- 

rithm, linear and nonlinear examples were used. The obtained re- 

sults were compared with the Maximum Margin Planning (MMP) 

[8] and MMPBoost [9] , techniques according to the expectations, 

always demonstrating a strong association between the output ob- 

tained by the algorithm and the planning of new paths following 

the expert’s strategy. Applied to the inverse path planning prob- 

lem this learning strategy permits us to obtain plans from the per- 

ception of the features of maps. This information is of great im- 

portance to be used in any path planning applications, such as 

the layout of roads and railways, paths for robots and autonomous 

vehicles. 

The remainder of this paper is organized as follows. 

Section 2 describes preliminary concepts concerned with the 

structured prediction model and the solution for the linear case 

based on a primal formulation of the structured perceptron. 

Section 3 addresses the nonlinear case and the dual formulation 

proposed for the structured perceptron, including the kernel 

functions. Section 4 reports the costs prediction problem. In 

Section 5 we describe the experiments and present the obtained 

results. Finally, in Section 6 , some considerations and conclusions 

about the work are reported. 

2. Structured prediction model 

Given a training set S = { ( x i , y i ) , i = 1 , . . . , m } , each pair is 

formed by a sample represented by a structured object x i and a 

desirable solution y i . The function f describes an association be- 

tween the input x i and an output y which is usually defined by a 

linear operator, resulting in a vector f ( x i , y ) called feature vector. 

The goal is to obtain a parameter vector w such that: 

arg min 

y ∈ Y i 

{
w 

T f ( x i , y ) 
}

≈ y, i = 1 , . . . , m, (1) 

where Y i is the set of all possible solutions related to the struc- 

tured object x i . The cardinality of Y i can be very high, but we can 

use techniques that efficiently choose the best candidates y . Hence, 

learning the parameter vector w allows us to reach the best solu- 

tion for each pair ( x i , y ) that is exactly the solution y i ∈ S. 

2.1. Maximum margin approach 

The approach to solve this problem is based on a generalization 

of the principle of maximum margin [12] used in support vector 

machines [15] and requires the solution of the following quadratic 

programming problem related to the minimization of the vector 

norm: 

min 1 / 2 w 

2 
2 

subject to : 

w 

T f ( x i , y ) − w 

T f ( x i , y i ) ≥ l i ( y ) , ∀ i, ∀ y ∈ Y i , 

(2) 

where the function l i (y ) is defined as a loss function that scales 

the geometric value of the margin. Introducing the optimization 

process, which allows us to choose the best candidate, we can ex- 

press the problem in the form: 

min 1 / 2 w 

2 
2 

subject to : 

w 

T f ( x i , y i ) ≤ min 

y ∈ Y ( i ) 

{
w 

T f ( x i , y ) − l i ( y ) 
}
, i = 1 , . . . , m. 

(3) 

The margin γi of a sample ( x i , y i ) compared to another element 

y ∈ Y i is interpreted as: 

γy i ,y = 

(
w 

T f ( x i , y ) − w 

T f ( x i , y i ) 
)
/ w 2 . (4) 

When we compare this element to all the other elements y ∈ Y i 
and y � = y i , the margin of each sample is given by: 

γi = 

(
min 

y ∈ Y i , y � = y i 

{
w 

T f ( x i , y ) − w 

T f ( x i , y i ) 
})

/ w 2 . (5) 

The final margin will be considered as the minimum value of 

all margins, i.e., γ = min { y i } , i = 1 , . . . , m . 

Tsochantaridis et al. [14] consider a margin parameter that must 

be maximized with an additional restriction: the control of the w 

norm. So, the problem ( 3 ) can be rewritten as: 

max γ

subject to : 

min 

y ∈ Y i 

{
w 

T f ( x i , y ) − l i ( y ) 
}

− w 

T f ( x i , y i ) ≥ γ , i = 1 , . . . , m. 

(6) 

Consequently, minimizing the Euclidean norm of vector w or, 

equivalently, maximizing the margin γ , results in obtaining a so- 

lution of maximum margin. For cases with nonlinearity we can 

introduce slack variables or use a dual formulation with the in- 

troduction of kernel functions. Note that the optimization problem 

min y ∈ Y i { w 

T f ( x i , y ) − l i (y ) } is similar to the original problem asso- 

ciated with structured learning. In general, this problem has poly- 

nomial complexity, such as a shortest path problem on an oriented 

graph, but requires the use of the vector of costs w in the input 

space. 
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