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a b s t r a c t

Robust acoustic modeling is essential in the development of automatic speech recognition systems applied

to spoken human-computer interaction. To this end, traditional hidden Markov models (HMM) may be im-

proved by hybridizing them with artificial neural networks (ANN). Crucially, ANNs require input values that

do not compromize their numerical stability. In spite of the relevance feature normalization has on the suc-

cess of ANNs in real-world applications, the issue is mostly overlooked on the false premize that “any normal-

ization technique will do”. The paper proposes a gradient-ascent, maximum-likelihood algorithm for feature

normalization. Relying on mixtures of logistic densities, it ensures ANN-friendly values that are distributed

over the (0, 1) interval in a uniform manner. Some nice properties of the approach are discussed. The algo-

rithm is applied to the normalization of acoustic features for a hybrid ANN/HMM speech recognizer. Exper-

iments on real-world continuous speech recognition tasks are presented. The hybrid system turns out to be

positively affected by the proposed technique.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The development of systems for spoken human-computer inter-

action [33] per se revolves around two major components, namely a

speech synthesizer and an automatic speech recognizer. The latter,

in turn, involves a language model and a so-called acoustic model.

While the language model aims at constraining the hypothesis space

within grammatically or probabilistically plausible borders (e.g., by

means of n-grams estimated via frequentist approaches from text

or transcripts of dialogues [7]), the acoustic model copes with the

speech signal, aiming at capturing the significant statistical proper-

ties of the acoustic phenomena at a phonetic level of analysis [32].

This is not accomplished on the raw waveform, but on a suitable

representation of the signal in the form of a set of acoustic param-

eters, or features. These features are extracted via pre-defined sig-

nal processing techniques, mostly relying on spectral analysis and

filtering [12].

Hidden Markov models (HMM) [17,28] are far the most popular

model at the acoustic level. Although they are viable approaches to

the problem of acoustic modeling (allowing for good recognition per-

formance under many circumstances) they also suffer from some se-

vere limitations, mostly due to their parametric nature. Drawbacks of
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HMMs are analyzed in detail, for instance, in [5,35]. These limitations

are the reason why several scientists have been proposing hybrid sys-

tems that combine the long-term modeling capabilities of HMMs and

the flexibility [10] of artificial neural networks (ANN) [3]. Albeit tra-

ditional ANNs (e.g., multilayer perceptrons and radial basis function

networks [3]) resulted infeasible for speech recognition when used as

stand-alone recognizers, they proved themselves successful in sev-

eral combinations with HMMs. Established instances are surveyed

in [35].

A ticklish aspect in using ANNs within hybrid paradigms (as well

as in using them in general) lies in the numeric nature, distribution,

and range of the input features. While continuous-density HMMs,

based on mixtures of Gaussian components, are little (or, not at all)

sensitive to these issues, ANNs require input values that do not com-

promize their numerical stability. Indeed, normalization of the fea-

ture vectors is common (and, necessary) practice in real-world appli-

cations of ANNs. Its relevance and its potential implications have long

been investigated in classic pattern recognition literature [13,14,18].

Although the success of connectionist models in difficult tasks may

depend on the outcome of a more or less adequate feature normal-

ization, surprisingly enough the topic is often under-rated on the

false premize that “any normalization technique will just do”. The

paper copes with the issue, proposing a novel, ANN-oriented feature

normalization algorithm that is then applied to a continuous speech

recognition task relying on the ANN/HMM hybrid paradigm we pro-

posed in [36]. This paper stems from some preliminary ideas we

put forward in a conference presentation [34], and introduces a new
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algorithm for an improved model (whose properties are discussed, as

well), along with a set of new, sound experiments.

1.1. Feature normalization: formulation of the problem

Let us assume that the input (or, output) patterns are in the form

x = (x1, . . . , xd), and that they are extracted from a d-dimensional,

real-valued feature space X ∈ �d. Individual feature values xi, i =
1, . . . , d, are measurements of certain attributes, according to a

problem-specific feature extraction process. Such measurements are

expressed, in general, in terms of different units, and the latter ones

may span different possible ranges of values. Major motivations for

applying a normalization method include the following.

1. Reducing all features x1, . . . , xd to a common range (a, b), where

a, b ∈ �. In so doing, increased homogeneity of values is gained,

yielding a common (e.g., Euclidean) “distance measure” over pat-

terns along the different axis. Furthermore, all features are given

the same credit, or weight: unnormalized features that span a

wider numerical range would otherwise overpower features de-

fined over smaller intervals.

2. Tackling, or reducing, numerical stability problems of the learn-

ing algorithms in the ANN (i.e., during the computation of partial

derivatives of the nonlinearities of the model). In particular, input

values should not exceed a certain (a, b) interval, in order to avoid

the phenomenon of “saturation” of sigmoids. As a matter of fact,

saturation occurs when the activation value a (input argument) of

a sigmoid σ (a) is along the tails of σ (.), where the partial deriva-

tive δσ (a)
δa

is numerically null. In case of saturation, the sigmoid is

basically “stuck” and it cannot provide any further contribution to

the gradient-driven learning of connection weights.

3. Stabilizing the numerical behavior of the delta-rule in the back-

propagation (BP) algorithm [30]. It is known that BP prescribes a

delta-rule for the connection weights either in the form �wi j =
ηδiσ j(a j) (for a generic hidden or output weight wij), or �w jk =
ηδ jxk (for weights wjk in the first layer, i.e. the input layer). The

neuron-specific quantities δi, δj are the core of BP, and they are

strictly related to the back-propagated gradient of the criterion

function. A sigmoid activation function σ j(aj) is associated with

the generic jth hidden neuron. Assuming the same learning rate η
is used in both the above forms of delta-rule, it is seen that unnor-

malized features xk having large value (say, xk � 1) would over-

drive the learning process for input weights wjk (whose �’s are

directly affected by xk) w.r.t. the other weights of the ANN (whose

�’s are rather affected by σ j(aj) < 1).

4. Allowing for application of a nonlinear (sigmoid) output layer

even though the target outputs are defined over a wider range

Y ⊂ �, Y � (0, 1). Actually, sigmoids in the form 1
1+e−a are lim-

ited to the (0, 1) interval, and hyperbolic-tangent sigmoids range

over the ( − 1, 1) interval, while the task at hand might require

outputs exceeding these ranges.

5. Leading to data distributions that are basically invariant to rigid

displacements of the coordinates.

1.2. Concise survey of established normalization methods

Traditional normalization techniques rely prevalently on the fol-

lowing approaches: (i) for each feature i = 1, . . . , d, find the maxi-

mum absolute value Mi (i.e., Mi ∈ R+) over the training set, and nor-

malize each pattern x to obtain a new pattern x′ defined as x′ =
(x1/M1, . . . , xd/Md). This ensures features within the ( − 1, 1) range.

A similar technique is described in [8]; (ii) compute the sample mean

mi and the sample variance si for each feature i = 1, . . . , d, and nor-

malize x to obtain x′ = ( x1−m1
s1

, . . . ,
xd−md

sd
). This ensures zero mean

and unit variance along all coordinate axis of the normalized feature

space [18]; and (iii) transform the components of x by means of a

smooth nonlinearity φ: � → � that maps its argument onto the de-

sired, normalized range: x′ = (φ(x1), . . . , φ(xd)). Approaches (i) and

(ii), i.e. mean subtraction and division by maximum, are sometimes

combined.

Other (often similar) approaches can be found in the literature.

For instance, [15] presents an algorithm based on a heterogeneity

measure, while [21] proposes a combined normalization/clustering

procedure. Different methods rely on linear projections, e.g. the

eigenvector projection or Karhunen–Loeve method [18], where the

original features are linearly transformed to a lower dimensionality

space. These transformations imply a certain loss of information w.r.t.

the original feature space representation of patterns.

1.3. Overview of the paper

This paper introduces a novel ANN-oriented feature normaliza-

tion technique that ensures values that are distributed over the (0, 1)

interval in a uniform manner. Thence, the data are basically reduced

to a sample-invariant distribution, regardless of their original statis-

tics. As a consequence, at least in principle, the ANN architecture and

the training parameters (e.g., the learning rate), once selected prop-

erly, may be expected to fit different d-dimensional datasets. Eventu-

ally, it is straightforward to map the normalized data onto any zero-

centered interval, e.g. ( − 1, 1), if desired. The technique is inspired by

an approach suggested by Yoshua Bengio1, who used the rank of dis-

crete observations as their numeric feature value. The normalization

is obtained starting from a maximum-likelihood estimation of the

probabilistic distribution of input features, according to a particular

parametric model, namely a mixture of logistic densities (and the cor-

responding cumulative distribution function). Since no closed-form

solution can be found for the parameters of this model, a gradient-

ascent iterative algorithm is proposed. The technique is described in

detail in Section 2.

The model is shown to be general enough to cover (to any degree

of precision) all cases of practical interest of data distributions (ac-

cording to a properly defined class of non-paltry probability density

functions). In addition to the aforementioned benefits, the technique

turns out to be compliant with the very numerical nature of the ANN

(it is realized via a mixture of sigmoids, that can even be encapsulated

within the ANN itself). These properties of the proposed approach are

discussed in Section 3.

The ANN/HMM hybrid speech recognizer is reviewed in Section 4,

where its architecture and learning algorithm are summarized.

An experimental evaluation on real-world, speaker-independent,

continuous speech recognition tasks from the SPK, Aurora, and

SpeechDat-Car/Aurora 3 corpora (Section 5) confirms that suitable

ANN/HMM hybrids may outperform standard HMMs. The experi-

ments show also that: (1) normalization of the acoustic features is

necessary in order for the ANNs to behave properly, but has a nega-

tive impact on the Gaussian-based HMM, as expected; (ii) traditional

normalization methods do work, but the choice of the specific tech-

nique affects profoundly the robustness of the resulting ANN/HMM-

based speech recognizer; (iii) the proposed normalization algorithm

is effective. It improves significantly over the traditional approaches,

turning out to be noise-tolerant and more suitable to the speech

recognition tasks under consideration. Conclusive remarks are drawn

in Section 6.

2. The proposed normalization method

Normalization is accomplished by transforming individual com-

ponents of each input pattern into the corresponding value of the

cumulative distribution function (cdf) of the inputs, estimated on a

1 Y. Bengio, personal communication to the author.



Download English Version:

https://daneshyari.com/en/article/6941078

Download Persian Version:

https://daneshyari.com/article/6941078

Daneshyari.com

https://daneshyari.com/en/article/6941078
https://daneshyari.com/article/6941078
https://daneshyari.com

