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a b s t r a c t

This paper investigates the problem of learning sets of discriminative patterns from local binary patterns

(LBP). Such patterns are usually referred to as ‘dominant local binary patterns’ (DLBP). The strategies to ob-

tain the dominant patterns may either keep knowledge of the patterns labels or discard it. It is the aim of

this work to determine which is the best option. To this end the paper studies the effectiveness of differ-

ent strategies in terms of accuracy, data compression ratio and time complexity. The results show that DLBP

provides a significant compression rate with only a slight accuracy decrease with respect to LBP, and that

retaining information about the patterns’ labels improves the discrimination capability of DLBP. Theoretical

analysis of time complexity revealed that the gain/loss provided by DLBP vs. LBP depends on the classifica-

tion strategy: we show that, asymptotically, there is in principle no advantage when classification is based

on computationally-cheap methods (such as nearest neighbour and nearest mean classifiers), because in this

case determining the dominant patterns is computationally more expensive than classifying using the whole

feature vector; by contrast, pattern selection can be beneficial with more complex classifiers such as support

vector machines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

LBP is a very popular approach to texture analysis with appli-

cations in a wide range of areas such as, among others, surface in-

spection, face recognition, biometrics and medical image analysis [2].

The method is much appreciated for its many desirable properties,

such as ease of implementation, invariance to illumination changes,

limited computational demand and high descriptive performance –

especially when the level of noise is low [14]. LBP considers, as im-

age features, the occurrence probability of the binary patterns that

can be generated from an image patch of predefined shape and size

when thresholded at the value of the central pixel. It is well known

that the resulting probability distribution tends to be highly un-

even: some patterns tend to occur much more frequently than oth-

ers [24]. Many researchers have been concerned with the problem

of reducing the dimensionality of LBP by determining the subsets

of patterns that convey the largest amount of information. A com-

mon approach consists of reducing the number of features by using

some a priori rules [20]: Ojala et al. for instance proposed to cluster
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patterns into rotationally-equivalent classes, an approach which gen-

erates the well-known family of rotation invariant descriptors (LBPri).

They also suggested that further reduction could be obtained by con-

sidering the so called ‘uniform patterns’ (LBPriu2), namely those pat-

terns that have at most two bitwise transitions [24]. Experiments

have shown that uniform patterns are the most common in natural

images [24], a finding which was later on explained on a theoretical

basis [1].

As an alternative, Liao et al. [17] and, more recently, Nanni et al.

[22] and Guo et al. [12], proposed a posteriori strategies in which the

patterns to retain are learnt from some training data. Liao et al. [17]

for instance suggested to retain, as features, the probability of occur-

rence of the smallest set of patterns that, in any given image, repre-

sent a certain percent – 80% in their implementation – of the total

population. The resulting dominant local binary patterns (DLBP) bear

no information about the patterns’ labels [17]; instead, they consider

the relative patterns’ frequency only. As a consequence this scheme

does not guarantee that the ith element of the feature vector ex-

tracted from an image I1 and the ith element of the feature vector

extracted from an image I2 refer to the same pattern. For this reason

we refer to such selection strategy as an unlabelled model. A natu-

ral question arises whether comparing the probability of occurrence

of different patterns makes sense altogether [6]. In [17] the authors

affirm that omitting the pattern type information is not harmful; in
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this paper we endorse a diametric opposite view: that neglecting

information about the patterns type has negative effects on the dis-

crimination capability of the method. Our main claim is that feature

selection schemes that keep knowledge of the patterns’ type outper-

form the unlabelled approach. We refer to such reduction schemes as

labelled methods.

In the remainder of the paper, after recalling the basics of LBP

in Section 2, we discuss the unlabelled (Section 3) and labelled

(Section 4) approach for determining dominant local binary patterns

and perform an experimental comparison in Section 5. The results

presented in Section 6 show that in no case the unlabelled model is

superior to the labelled counterparts. We also evaluate the compres-

sion ratio that can be obtained with the various methods and study

the effect of the different feature reduction schemes on the overall

computing time. Section 7 concludes the paper with some final con-

siderations.

2. Brief overview of LBP

The LBP operator characterizes images through the probability

of occurrence of certain binary patterns that a neighbourhood of

predefined shape and size can generate [24]. The typical configura-

tion consists of a central pixel plus a set of peripheral points evenly

spaced along a circle (see Fig. 1) – but other arrangements have been

proposed as well [21]. The intensity values of those points that do

not coincide with image pixels are estimated through interpolation.

Such neighbourhoods are conventionally indicated in the form (m, R),

where m represents the number of peripheral points and R the radius

of the circle.

For each position of the neighbourhood a corresponding binary

pattern is obtained by thresholding the intensity values of the pe-

ripheral points at the value of the central pixel. Each binary patterns

is then assigned a unique label in the following way:

LBPm,R =
m−1∑
i=0

2iξ(Ii − Ic) (1)

where ξ is the binary thresholding function (Eq. 2).

ξ(x) =
{

1, if x ≥ 0

0, if x < 0
(2)

As a result, the LBPm, R operator produces 2m different binary pat-

terns. Theoretically, when the input image rotates by angular steps

of ±2π /m radians, the binary sequence {ξ(Ii − Ic)}, i ∈ {1, . . . , m − 1}
circularly shifts by one position to the left or to the right. To make

the descriptor invariant against rotation, one can consider equivalent

all the patterns that can be transformed into one another by a rota-

tion of multiples of ±2π /m radians. This approach gives rise to the

rotation invariant operator, usually referred to as LBPri
m,R. The num-

ber of rotationally-equivalent classes for a given m can be determined

through group theory, as detailed in Ref. [8]. Table 1 shows the num-

ber of features generated by the LBPm,R and LBPri
m,R operators for dif-

Fig. 1. Circular neighbourhood.

Table 1

Number of local binary patterns.

m N

LBPm,R LBPri
m,R

4 16 6

8 256 36

16 65,536 4116

24 16,777,216 699,252

ferent values of m. Clearly the dimension of the descriptors grows

quickly as m increases.

High dimensional data are in general difficult to handle due to the

‘curse of dimensionality’ [7]. Moreover, both experimental and the-

oretical studies have suggested that the probability of occurrence of

local binary patterns may vary greatly from one pattern to another,

and that certain patterns very seldom occur in practice [1,24]. As

a result, some of them are likely to produce only noisy and irrele-

vant features that may mislead the classification [12]. The problem

of determining the set of ‘most discriminative’ patterns is therefore a

very actual and interesting one both from a theoretical and practical

standopint.

3. Dominant local binary patterns: the unlabelled model (DLBP)

As we mentioned in Section 1, the unlabelled approach discards

any information about the patterns’ labels. The method consists of

sorting the LBP histogram of each image in descending order and re-

taining a certain number of bins. Given a set of train images, the num-

ber of bins to retain is computed by determining, for each train im-

age, the cardinality of the smallest set of patterns that accounts for

a given fraction of the total occurrence probability and by averaging

this value over the whole train set. Each histogram is sorted indepen-

dently of the others in this scheme, therefore any information about

the patterns’ type is lost: the resulting DLBP features will only contain

information about the patterns’ frequencies. This strategy is based on

the assumption that it is the relative probability distribution what re-

ally matters, not the occurrence probability of each specific pattern

[17]. As for the fraction of the total occurrence to retain, throughout

the paper we maintain the settings proposed in the above-cited refer-

ence, where the authors recommend the value 0.8. From a computa-

tional standpoint, the algorithm is dominated by the ordering of each

vector of the train set, therefore executes in O(MNlogN) time, where

M is the number of train patterns and N the dimension of the original

descriptor.

4. Dominant local binary patterns: the labelled model

As opposed to the unlabelled model, the labelled model keeps

knowledge of the patterns’ labels. Different implementations of this

approach have been proposed in the literature: we briefly recall them

in the following subsections.

4.1. Labelled dominant local binary patterns (L-DLBP)

Labelled dominant local binary patterns have been described by

Fu et al. [10] and, more recently, by González et al. [11]. In this scheme

the original LBP histograms of the train images are first averaged

column-wise (feature-by-feature) and the resulting vector (average

patterns’ frequencies) is sorted in descending order. Then the labels of

the smallest set of co-occurrences that sum at least 0.8 are retained;

the others are discarded. The labels this way obtained constitute the

set of dominant patterns; the feature vector of any image is repre-

sented by the probabilities of occurrence of these patterns. From a



Download English Version:

https://daneshyari.com/en/article/6941104

Download Persian Version:

https://daneshyari.com/article/6941104

Daneshyari.com

https://daneshyari.com/en/article/6941104
https://daneshyari.com/article/6941104
https://daneshyari.com

