
Pattern Recognition Letters 65 (2015) 29–36

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Improving bipartite graph matching by assessing the assignment

confidence✩

Miquel Ferrer a, Francesc Serratosa b, Kaspar Riesen a,∗

a Institute for Information Systems, University of Applied Sciences and Arts Northwestern Switzerland, Riggenbachstrasse 16, Olten CH-4600, Switzerland
b Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain

a r t i c l e i n f o

Article history:

Received 27 February 2015

Available online 22 July 2015

Keywords:

Graph matching

Graph edit distance

Beam search

a b s t r a c t

Due to the ability of graphs to represent properties of entities and binary relations at the same time, a grow-

ing interest in this representation formalism can be observed in various fields of pattern recognition. The

availability of a distance measure is a basic requirement for pattern recognition. For graphs, graph edit dis-

tance is still one of the most popular distance measures. In the present paper we substantially improve the

distance accuracy of a recent framework for the approximation of graph edit distance. The basic idea of our

novel approach is to manipulate the initial assignment returned by the approximation algorithm such that

the individual assignments are ordered according to their individual confidence. Next, the individual assign-

ments are post processed in this specific order. In an experimental evaluation we show that the order of the

assignments plays a crucial role for the resulting distance accuracy. Moreover, we empirically verify that our

novel generalization is able to generate approximations which are very near to the exact edit distance (in

contrast with the original framework).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The availability of a distance measure is a basic requirement for

pattern recognition. If feature vectors are used for pattern repre-

sentation, the Euclidean distance and similar measures can be used.

If graphs are used instead, a large number of procedures for graph

dissimilarity computation, commonly referred to as graph match-

ing, exist (see ([7,29]) for exhaustive surveys). They include methods

from spectral graph theory ([5,18]), relaxation labeling ([20,28,30]), and

graduated assignments ([14,27]).

With the rise of graph kernels and graph embedding meth-

ods ([1,4,11,13]), the traditional gap between statistical and structural

pattern recognition has been bridged. Both graph kernels and graph

embedding provide a powerful vectorial description of the underly-

ing graphs. Yet, both approaches crucially depend on similarity or dis-

similarity computation on graphs and thus graph matching remains

an important topic in the field of structural pattern recognition.

Graph edit distance ([3,25]), introduced about 30 years ago, is

still one of the most flexible and versatile graph matching models

available. Note that many graph matching models (e.g. spectral

methods ([5,18])) are purely structural, in the sense that they are

only applicable to unlabeled graphs, or they allow only severely

✩ This paper has been recommended for acceptance by M. Couprie.
∗ Corresponding author: Tel.: +41 79 688 7719; fax: +41 31 6318699

E-mail address: kaspar.riesen@fhnw.ch (K. Riesen).

constrained label alphabets. Yet, graph edit distance is able to cope

with both directed and undirected, as well as with both labeled and

unlabeled graphs. In addition, if there are labels on nodes, edges, or

both, no constraints on the respective label alphabets have to be con-

sidered. Moreover, through the use of a cost function graph edit dis-

tance can be adapted and tailored to various problem specifications.

Due to this high flexibility, graph edit distance has found

widespread applications. That is, the concept of graph edit distance

has been successfully applied in the field of chemoinformatics

for predicting or analyzing certain properties of molecular com-

pounds ([2,12]). Malware Detection, i.e. the distinction between

malicious and original binary executables ([17]). Fingerprint classifi-

cation ([21]), or handwriting recognition ([10]) are other prominent

examples where graph edit distance has proved to be suitable for

error-tolerant graph matching.

The major drawback of graph edit distance is, however, its com-

putational complexity which is exponential in the number of nodes

of the involved graphs. Consequently, exact edit distance can be com-

puted for graphs of rather small size only. Recently an algorithmic

framework for the approximate computation of graph edit distance

in cubic time has been presented ([23]). The substantial speed-up of

this approximation is, however, at the expense of a general overes-

timation of the actual graph edit distance. The reason for this over-

estimation is that the core of the approximation framework is able

to consider only local, rather than the global, edge structure of the

underlying graphs.

http://dx.doi.org/10.1016/j.patrec.2015.07.010

0167-8655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2015.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.07.010&domain=pdf
mailto:kaspar.riesen@fhnw.ch
http://dx.doi.org/10.1016/j.patrec.2015.07.010


30 M. Ferrer et al. / Pattern Recognition Letters 65 (2015) 29–36

In order to overcome this problem and reduce the overestimation

a variation of the original framework has been recently proposed in

([24]). Given the initial matching found by the original framework,

the main idea is to carry out a post processing step such that the

number of incorrect assignments is decreased (which in turn reduces

the overall overestimation). The proposed post processing varies the

original node mapping by systematically swapping the target nodes

of two individual node assignments. In order to search the space of

assignment variations a beam search (i.e. a tree search with pruning)

is used. One of the most important observations derived from ([24])

is that given an initial node assignment, one can substantially reduce

the overestimation using this local search method.

Yet, to date the node mapping is varied without using any kind of

heuristic information. In particular, it is not taken into account that

certain nodes and/or local assignments are more evident than oth-

ers, and should thus be considered first (or last) in the search pro-

cess. In this paper we propose six different heuristics (plus inverse of

them) that modify the initial node assignment returned by the origi-

nal approximation framework. These heuristics are used to influence

the order in which the assignments are eventually varied during the

beam search. In other words, prior to run the beam search strategy

proposed in ([24]), the order of the assignments is varied according

to these heuristics.

The basics of the present paper have been lined up in preliminary

papers ([8,9]). Yet, the present paper has been significantly extended

with respect to the underlying methodology and the experimental

evaluation. In particular, rather than using various randomized per-

mutations of the assignments (as proposed in ([8])) we now use de-

terministic procedures for influencing the assignment order. More-

over, compared to ([9]) the number of sorting strategies as well as

the number of data sets is substantially increased. Last but not least,

we introduce a combination framework for using different sorting

strategies simultaneously and thoroughly investigate the impact of

such combinations.

2. Graph edit distance computation

In this section we start with our basic notation of graphs and then

review the concept of graph edit distance. Eventually, the approx-

imate graph edit distance algorithms (which build the basis of the

present work) are briefly described1.

2.1. Graph edit distance

A graph g is a four-tuple g = (V, E,μ, κ), where V is the finite set of

nodes, E ⊆ V × V is the set of edges, μ : V −→ LV is the node labeling

function, and κ : E −→ LE is the edge labeling function. The labels for

both nodes and edges can be given, for instance, by the vector space

L = R
n, a set of symbolic labels L = {α,β, γ , . . .}, or a combination of

various label alphabets from different domains. Unlabeled graphs are

a special case by assigning the same (empty) label ∅ to all nodes and

edges.

Given two graphs, g1 = (V1, E1,μ1, κ1) and g2 = (V2, E2,μ2, κ2),
the basic idea of graph edit distance is to transform g1 into g2 using

edit operations, namely, insertions, deletions, and substitutions of both

nodes and edges. The substitution of two nodes u and v is denoted by

(u → v), the deletion of node u by (u → ε), and the insertion of node

v by (ε → v)2.

A sequence (e1, . . . , ek) of k edit operations ei that transform g1

completely into g2 is called an edit path λ(g1, g2) between g1 and g2.

Let Y(g1, g2) denote the set of all edit paths between two graphs

g1 and g2. To find the most suitable edit path out of Y(g1, g2), one

1 In Table 4 at the end of the present paper the different notations/symbols that are

used in the paper are summarized.
2 Similar notation is used for edges.

commonly introduces a cost function c(e) for every edit operation

e, measuring the strength of the corresponding operation. Hence,

cost functions allow the integration of domain specific knowledge

about object similarity in the matching process (note that automatic

procedures for learning the edit costs from a set of sample graphs are

also available ([6,26])).

Clearly, between two similar graphs, there should exist an inex-

pensive edit path, representing low cost edit operations, while for

dissimilar graphs an edit path with high cost is needed. Consequently,

the edit distance dλmin
(g1, g2), or dλmin

for short, between two graphs

g1 and g2 is defined by

dλmin
(g1, g2) = min

λ∈ϒ(g1,g2)

∑
ei∈λ

c(ei). (1)

2.2. Bipartite graph edit distance approximation

Exact computation of graph edit distance is usually carried out

by means of a tree search algorithm (e.g. A∗ ([15])) which explores

the space of all possible mappings of the nodes and edges of the first

graph to the nodes and edges of the second graph. A major drawback

of such an exhaustive search is its computational complexity which is

exponential in the number of nodes. In fact, the problem of graph edit

distance can be reformulated as an instance of a Quadratic Assignment

Problem (QAP) which is known to be NP-complete.

The approximate graph matching framework introduced in ([23])

reduces the problem of graph edit distance computation to an in-

stance of a Linear Sum Assignment Problem (LSAP) which can be – in

contrast with QAPs – efficiently solved. The reformulation of graph

edit distance to an instance of an LSAP is carried out by means of the

following three major steps.

First Step. Assume that the graphs to be matched consist of

node sets V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}, re-

spectively. A cost matrix C is then defined as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞
c21 c22 · · · c2m ∞ c2ε

. . .
...

...
...

. . .
...

...
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2

. . .
... 0 0

. . .
...

...
. . .

. . . ∞
...

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Entries cij (defined in the left upper part of C) denote the

cost of node substitutions (ui → vj), ciε (defined in the

right upper part of C) denote the cost of node deletions

(ui → ε), and cεj (defined in the left lower part of C) de-

note the cost of node insertions (ε → vj). Note that every

node can be deleted or inserted at most once. Therefore

any non-diagonal element of the right-upper and left-

lower part is set to ∞. The bottom right part of the cost

matrix is set to zero since substitutions of the form (ε →
ε) should not cause any cost.

Second Step. Given the cost matrix C = (ci j), the LSAP optimization

consists in finding a permutation (ϕ1, . . . , ϕn+m) of the

integers (1, 2, . . . , (n + m)) that minimizes the overall

assignment cost
∑(n+m)

i=1
ciϕi

. In fact, this problem can be

solved in polynomial time by means of Munkres’ algo-

rithm ([19]), the algorithm of Volgenant–Jonker ([16]),

or many others.

The resulting permutation corresponds to the mapping

ψ = ((u1 → vϕ1
), (u2 → vϕ2

), . . . , (um+n → vϕm+n
))



Download English Version:

https://daneshyari.com/en/article/6941107

Download Persian Version:

https://daneshyari.com/article/6941107

Daneshyari.com

https://daneshyari.com/en/article/6941107
https://daneshyari.com/article/6941107
https://daneshyari.com

