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a b s t r a c t

This paper presents a robust framework for simultaneously tracking rigid pose and non-rigid animation of a

single face with a monocular camera. Our proposed method consists of two phases: training and tracking. In

the training phase, using automatically detected landmarks and the three-dimensional face model Candide-3,

we built a cohort of synthetic face examples with a large range of the three axial rotations. The representation

of a face’s appearance is a set of local patches of landmarks that are characterized by Scale Invariant Feature

Transform (SIFT) descriptors. In the tracking phase, we propose an original approach combining geometric

and appearance models. The purpose of the geometric model is to provide a SIFT baseline matching between

the current frame and an adaptive set of keyframes for rigid parameter estimation. The appearance model

uses nearest synthetic examples of the training set to re-estimate rigid and non-rigid parameters. We found

a tracking capability up to 90° of vertical axial rotation, and our method is robust even in the presence of fast

movements, illumination changes and tracking losses. Numerical results on the rigid and non-rigid parameter

sets are reported using several annotated public databases. Compared to other published algorithms, our

method provides an excellent compromise between rigid and non-rigid parameter accuracies. The approach

has some potential, providing good pose estimation (average error less than 4° on the Boston University Face

Tracking dataset) and landmark tracking precision (6.3 pixel error compared to 6.8 of one of state-of-the-art

methods on Talking Face video).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Three-dimensional (3D) face pose tracking in a video sequence in-

volves the estimation of six rigid face parameters; the 3D translation

and the three axial rotations.1 This is an important issue, which has

been receiving considerable attention [9]. 3D face tracking is useful

in many domains, such as: video monitoring, human computer in-

teraction and biometrics. The problem becomes more challenging if

non-rigid face parameters, animation and/or expression, are also esti-

mated, or when including illumination changes, the presence of many

people, or occlusions. In this study, we adopt a classical approach,

based on a set of local landmarks with the constraint of a 3D face

model to track both rigid and non-rigid parameters of a single face

from a monocular camera.

✩ This paper has been recommended for acceptance by J. Yang.
∗ Corresponding author. Tel.: +33 6 51 38 78 76.

E-mail address: tntrung@gmail.com, trung-ngoc.tran@telecom-paristech.fr

(N.-T. Tran).
1 As commonly used in the literature, we adopt the terms Yaw (or Pan), Pitch (or Tilt)

and Roll for the three axial rotations.

Since the pioneer work of [10,11], it is well-known that the Active

Shape Model (ASM) and the Active Appearance Model (AAM) pro-

vide an efficient way to represent and track frontal faces. Many de-

velopments [16,23,39] improved the tracking in terms of fitting ac-

curacy or profile view tracking. The Constrained Local Model (CLM)

has been recently proposed [12] that consists of an exhaustive local

search around landmarks constrained by a 3D shape model. Saragih

et al. [29,36] improved this method in terms of accuracy and speed.

Saragih et al. [29] were able to track a single face with vertical rota-

tion of 90° in a well-controlled environment. Even though this face

model is very efficient for face tracking, significant annotated data of

pose directions are required to learn 3D model and appearance dis-

tributions. This is costly in unconstrained environments.

Several other face models have been considered, such as: cylinder

in [7,25,40], ellipsoid in [3], and mesh in [33]. Largely, these meth-

ods could estimate the three rotations and even profile-view, but they

only address rigid rather than non-rigid faces, making it impossible

to accommodate facial expressions.

The popular 3D Candide-3 model has been defined to manage

both shape and animation parameters. Ström [30] used the Kalman

filter to target points of interest in a video sequence based on an
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adaptive rendered keyframe. This approach is semi-automatic and in-

sufficient for quick movement. Chen and Davoine [8] took advantage

of local features constrained by this 3D model to capture both rigid

and non-rigid head motions. However, this method worked poorly

for profile-view due to the inefficiency of accommodating the large

variability of landmarks. Ybanez-Zepeda et al. [42] proposed a lin-

ear model between the facial parameters and the appearance of face

images. This method was only robust for face and landmark tracking

on near frontal faces. Lefevre and Odobez [20] extended Candide face

to work with profiles. Nevertheless, their objective function, combin-

ing structure and appearance features with dynamic modeling, ap-

pears to slowly converge due to the high dimension. Tran et al. [31]

proposed an adaptive Bayesian approach to track principal compo-

nents of landmark appearance. Their algorithm appears to be robust

for tracking landmarks, but is unable to recover when tracking is

lost. All these methods used a synthetic databases to learn training

models.

A tracking framework is robust if it can work with a wide range

of rotations, facial expressions, environmental changes and occlu-

sions, and is also recoverable if tracking is lost. Cascia et al. [7,40] uti-

lized dynamic templates of a cylinder model to address lighting and

self-occlusion problems. However, this approach accumulated errors

when accessing in long video sequences. Saragih et al. [29] consid-

ered the local features that are not much affected by the whole facial

appearance, expressions and self-occlusion. For recovery, tracking-

by-detection or wide baseline matching [17,33,35] was used to match

the current frame with preceding keyframes. The matching is suffi-

cient against fast movements and illumination changes, and is able

to recover lost tracking. However, the matching is only suitable with

rigid parameters. Moreover, these methods degraded when the num-

ber of keypoints detected on the face is too few. Recently, the cas-

caded regression has shown very impressive results in face align-

ment, such as [6,18,27,41], however, these method are developed for

near frontal face between ± 45° of Yaw rotation. Asteriadis et al.

[4] proposed the combination of traditional tracking techniques and

deep learning to provide a proficient pose tracking. Many commercial

products also exist, e.g. [14], which showed good results in pose and

face animation tracking. But this product requires the controlled en-

vironment of illumination and movements. In addition, it must wait

for the frontal view to recover when tracking is lost.

We propose a robust framework for tracking facial pose with large

rotations, and facial animation. We focus on three aspects: (i) a syn-

thetic database, (ii) SIFT descriptors and (iii) the combination of geo-

metric and appearance models.

First, we build a synthetic database to avoid expensive and time-

consuming manual annotation. This consists of a large set of face

poses, approximately 6500 synthesized poses, with Yaw, Pitch and

Roll from −90◦ to 90° with 10° steps. This database provides a basis

for non-rigid face and profile tracking.

Second, we utilize SIFT to represent the local patches. This is a

well-known descriptor proposed by [22] discriminative and robust to

illumination changes and to some affine transformations.

Third, a two-step approach is instigated: we first perform two-

dimensional (2D) SIFT matching between the current frame and some

preceding-stored keyframes to estimate rigid parameters only. Then,

we obtain the whole set of parameters (rigid and animation) using

maximum likelihood. A classical Huber M-estimator function was

employed to robustify this approach. Our proposed system provides

a very good compromise compared to other published algorithms on

several public datasets, in terms of pose estimation and landmark lo-

calization.

The remaining of this paper: Section 2 describes the face model

and the used descriptors. Section 3 discusses the pipeline of the pro-

posed framework. Experimental results and analysis are presented in

Section 4. Finally, in Section 5 we draw conclusions and discuss fur-

ther perspectives.

Fig. 1. Candide-3 frontal and profile view. Landmarks are used in tracking and defining

the region to extract the SIFT descriptor of one landmark with fixed scale and direction.

2. Face representation

2.1. Shape representation

Candide-3, initially proposed by [2], is a very commonly used 3D

model representing both facial shape and animation. It consists of

N = 113 vertices representing 168 surfaces. If g ∈ R3N denotes the vec-

tor of dimension 3N, obtained by concatenating of three components

of the N vertices, the face model can be written:

g(σ,α) = Rs(g + Sσ + Aα) + t (1)

where g is the mean value of g, R is a 3D rotation matrix, s is a

scale factor, and t is the 3D translation vector. The known matrices

S ∈ R3N×14 and A ∈ R3N×65 are Shape and Animation Units that con-

trol shape and animation, respectively, through the σ and α parame-

ters. Among the 65 components of animation control α, 11 track eye-

brows, eyes and lips. Therefore, the full model parameter, b, has 17

dimensions: 3 of rotation (rx, ry, rz), 3 of translation (tx, ty, tz) and 11

of animation ra:

b = [rx ry rz tx ty tz ra]T (2)

Although σ and b are both calculated at the first frame, only b is

re-calculated at the next frames because we assume that the shape

parameters are unchanged later. During tracking, b at time t is re-

written as bt (Section 3.2.3).

2.2. Projection

We assume a weak perspective projection from three dimensions

to two dimensions. Aggarwal et al. [1] showed that the focal length

does not need to be accurately known if the depth between the 3D ob-

ject and camera is much larger than the 3D object sizes. Therefore, the

camera calibration has been obtained from empirical experiments. In

our case, the intrinsic camera matrix is K = [ fx, 0, cx; 0, fy, cy; 0, 0, 1],

where the focal length of camera is fx = fy = 1000 pixels and the co-

ordinates of the camera’s principal point (cx, cy) is the center of 2D

video frame. Because of the perspective projection assumption, the

depth, tz, is directly related to scale parameter s.

2.3. Local representation

In our framework, a facial appearance is represented by a set

of 30 landmarks (Fig. 1). The local patch of one landmark is de-

scribed by SIFT descriptor. Because landmark positions are known,

SIFT detector is unnecessary and only the SIFT descriptor is involved.

Two important parameters need to be determined: SIFT scale and

orientation when using toolbox [34] for SIFT descriptors. In this

work, we define the scale of 1.2, which corresponds to a patch

of approximately 15 × 15 pixels, the same size like some previ-

ous works [29,36], and the direction to be vertical. Note that face

region is always normalized to 250 × 250 pixels before extract-

ing the local descriptors, so there is no significant impact of depth

translation.
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