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a b s t r a c t

Stochastic complexity-based penalization criteria can prove efficient and robust in spectroscopy applications

for unsupervised identification and concentration estimation of spectrally interfering chemical components.

It is shown here how the so-called Normalized Maximized Likelihood (nMDL) introduced in [17] can be tai-

lored to provide control of the detection performances in terms of probability of false alarm. Numerical ex-

periments conducted on realistic simulated optical spectroscopy signals evidence that the nMDL approach

outperforms standard information criteria in terms of model selection performances. Moreover, the ability to

control false alarm rates with the proposed modified nMDL criterion is demonstrated on simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model selection is a very common issue in the field of data

analysis and regression. Many questions usually have to be answered

simultaneously: does the data reveals the presence of a significant

feature (regressor), or not? If so, how many and which regressors

must be selected in the linear regression model to better explain the

observations? Without any model selection step, the most exhaustive

regression model would include all potential regressors, and may

lead to misleading and imprecise (if not incorrect) results, mostly

due to overfitting of the noise. This can have harmful consequences

in some situations, for instance in the context of trace gas detection

by optical spectroscopy as addressed by this paper as an illustration.

To avoid such undesirable situations, and to provide unsupervised

model selection strategies, many penalized regression methods

have been proposed using various penalization criteria, such as the

classical information criteria (Mallow’s Cp [13], Akaike’s AIC and

variants [1,10], Schwarz’s BIC [20], RIC [5], etc.). However, many

“best” penalization criteria have been introduced in the literature to

refine these standard selection rules, so as to optimize the quality of

model selection depending on the problem at hand [22]. This raises

the question of the generality of such penalization strategies. In that

context, since its introduction by Rissanen’s seminal work [15], the

Minimum Description Length (MDL) principle is an interesting and

fruitful attempt to build a general theoretical framework to interpret

model complexity and to provide unsupervised model selection
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rules. The MDL principle states that the best description of the data

must be given by the model leading to the shortest code length, or

stochastic complexity (SC) (expressed in bits or in nats (1 nat= ln 2

bits)) required to describe both the model and the data [9,15,18]. The

MDL principle has found wide applicability in very distinct contexts,

such as model selection [9], data clustering [8], but also radar signal

processing [3] or image segmentation [6].

In this paper, we focus on a sophisticated form of the SC, referred

to as Normalized Maximized Likelihood (nMDL) [17]. We show how

this penalization criterion can be modified so as to provide proba-

bility of false alarm (Pfa) control in the context of model selection,

and we illustrate this property on realistic numerical simulations

of an unsupervised optical spectroscopy experiment. The paper

is organized as follows: in Section 2, the expression of the nMDL

criterion is first recalled, and a modified version of this criterion is

derived, allowing to control the Pfa in the model selection procedure.

Then, a simulated experiment of optical spectroscopy is described

in Section 3 and numerical simulation results allow us to compare

the quality of the standard nMDL criterion with respect to more

standard information criteria. The possibility of Pfa control using the

proposed modified nMDL criterion is finally illustrated on simulated

data, before the conclusion of the paper is given in Section 4.

2. Normalized-Maximized Likelihood (nMDL) criterion and false

alarm rate control

Throughout this paper, we shall consider the simple problem of

linear regression, with m-dimensional observation vector ỹ modeled

as

ỹ = H · c + n, (1)
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with m × k regressor matrix H and unknown parameters vector c. We

further assume the m components of the additive noise vector n to

be independent realizations of a centered Gaussian random variable.

Under this hypothesis, applying a penalized criterion in the model

selection procedure corresponds to minimize the following quantity:

−�ỹ(ỹ; H) + C, (2)

where the expression of C depends on the penalization criterion

used (AIC, BIC, etc.), and where the log-likelihood is directly related

to the regression residual sum of squares (RSS) through �ỹ(ỹ; H) =
−(m/2) ln RSS.

2.1. nMDL criterion

The Normalized Maximized Likelihood (nMDL) is a recently intro-

duced form of SC [17] which has proved efficient in various practical

problems [4,9,18] and which presents various optimality properties

[18]. The nMDL theory suggests the following penalization terms to

be introduced in the criterion given in Eq. (2), depending on the hy-

pothesis considered [18]:
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where hypothesis H0 refers to the null-model (no regressor) and

hypothesis H(k)
1

to a selected model containing k regressors among

Km potential regressors. In this last equation, F denotes the stan-

dard F-ratio, which depends on the RSS of the regression through

F = (m − k)[ỹT ỹ − RSS]/(k RSS). The code length Lk needed for en-

coding model H(k)
1

is given by Lk = ln (Km
k ) + ln k + log2 ln (e Km) [18].

Lastly, it must be noted that the nMDL approach requires two hy-

perparameters a and b to be estimated. According to indications in

[18], they can be respectively estimated with the regression sum of

squares (i.e., ỹT ỹ − RSS) obtained with the most exhaustive model

H(Km)
1

and the regression sum of squares under null hypothesis H0.

As with standard information criteria, model selection is finally

carried out by identifying the set of regressors which minimizes the

penalized criterion. This operation can be performed by exhaustive

search, or by appropriate stepwise procedures, in which the num-

ber of regressors is gradually increased until no further decrease of

the criterion can be reached. Such a stepwise method will be used in

Section 3.

In the remainder of this section, we show and illustrate how the

nMDL criterion can be tailored so as to provide control of the false

alarm rate (Pfa) in a model selection procedure.

2.2. Pfa control and model selection

The link between detection performance and model selection is

a known result for standard information criteria. For instance, it is

quite straightforward to understand that using the AIC or BIC criteria

for model selection is equivalent to applying a standard generalized

likelihood ratio test (GLRT) with given threshold depending on the

penalization considered [23]. For example, to discriminate between

hypothesis H0 and hypothesis H1 (at least one regressor included in

the selected model), this decision rule can be summarized as

�glrt(ỹ) = ln

[
P(ỹ|H1)

P(ỹ|H0)

]
= �ỹ(ỹ;H1) − �ỹ(ỹ;H0)

H1

≷
H0

τ, (5)

where the value of the threshold τ fixes the Pfa. For a Gaussian noise

model, one simply has

�glrt(ỹ) = m

2
ln

RSS0

RSS1

. (6)

A similar property has been recently analyzed in the case of the

nMDL criterion in [7], where the authors evidenced that the applica-

tion of the nMDL criterion is formally equivalent to a GLRT with fixed

threshold. In the following, we show how to exploit this property so

as to control the Pfa in a model selection procedure. This is made pos-

sible by introducing a slightly modified version of the nMDL criterion.

2.3. Thresholded nMDL criterion for Pfa control

Although one of the main concerns that underlies MDL ap-

proaches is to minimize the number of user-defined parameters in

the criterion, we propose to introduce a fixed threshold in the appli-

cation of the nMDL criterion. Meanwhile, this avoids resorting to the

hyperparameters a and b included in the former criterion, which is

easily obtained by setting a = be in Eqs. (3) and (4). Such modified

nMDL criterion for discrimination between null/non-null hypotheses

leads to the following decision rule:
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illustrating that the nMDL criterion will reject hypothesis H0 if

�C(n)(ỹ, m, k) is lower than a given threshold.

Let us now analyze the relationship between the Pfa and the

value of the user-defined threshold δPfa. First, by noticing that �glrt =
m/2 ln[1 + kF/(m − k)], a few calculation steps allow us to show that

the quantity �C(n) can be rewritten as a function of the generalized

log-likelihood test (GLRT) �glrt as (see [7])

�C(n)(�glrt , m, k) = g(�glrt , m, k) + η(m, k) + Lk, (8)

with η(m, k) = − ln B[k/2, (m − k)/2], where the Beta function reads

B(x, y) = [�(x)�(y)]/�(x + y), and with

g(x, m, k) = −x + k

2
ln[e2x/m − 1]. (9)

Lk still denotes the code length needed to encode the model. Using

Stirling’s approximation of the Beta function, this modified nMDL cri-

terion can be rewritten �C′(n)
(�glrt , m, k) = g(�glrt , m, k) + η′(m, k) +

Lk, with

η′(m, k) = 1

2

[
f (m) − f (m − k) − f (k) + ln

[
k(m − k)

4πm

]
(10)

and f (x) = x ln (x).

From this expression, it can first be observed that

�C′(n)
(�glrt , m, k) does not evolve monotonously as a function

of �glrt. Nevertheless, following a similar reasoning as in [7], it can

be shown that the function �C′n(�glrt , m, k) is concave and takes

on positive values when �glrt lies within an interval [�−
glrt

, �+
glrt

] (see

Fig. 1), ∀ k ∈ [1; m], as soon as Km > 2. It is now quite obvious that the

application of the modified (thresholded) nMDL decision rule given

in Eq. (7) corresponds to a fixed value of the false alarm rate, which is

equal to the probability that �glrt lies outside the interval [�−
δPfa

; �+
δPfa

]

when hypothesis H0 is true, i.e.,

Pfa = Pr(�glrt < �−
δPfa

|H0) + Pr(�glrt > �+
δPfa

|H0). (11)

This is illustrated in Fig. 1 where the obtained Pfa corresponds to the

darkened areas under the red dashed curve representing the proba-

bility density function (pdf) of the log-likelihood ratio �glrt under hy-

pothesis H0. From this last relation, it is now clear that provided the
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