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a b s t r a c t

For decades practitioners have been using the separable distance and inner product induced norms as the

distance measures for k-means, Fuzzy C-Means (FCM), hard and fuzzy k-modes clustering algorithms. In this

paper, we introduce a novel concept of automated feature weighting for general clustering algorithms (in-

cluding both hard and fuzzy clustering) to amplify the effect of the discriminating features, which play a

key role in identifying the naturally occurring groups in data with minimal computational overheads. We

derive a Lloyd heuristic and an alternating optimization algorithm for solving the hard and the fuzzy cluster-

ing problems respectively. We also investigate the mathematical nature of the problems in sufficient details

to guarantee the existence and feasibility of a solution at each iteration of the aforementioned algorithms.

We show that majority of the automated feature weighting schemes existing in the literature turn out to

be the special cases of this proposed generalization. A brief discussion on practical utility of the proposed

generalization is also presented along with indication of the future applications of this new approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ability to partition a collection of objects into meaningful groups

stands out to be a fundamental mode of learning. Clustering algo-

rithms appear as the formal tools for the computer-aided detection

of the naturally occurring groups in a collection of objects or dataset.

The aim of any clustering algorithm is to evolve a partition matrix

representing a possible grouping of the dataset into a number of clus-

ters such that objects belonging to the same group may share maxi-

mum amount of similarity in some sense, whereas objects from dif-

ferent groups are as dissimilar as possible with respect to the same

sense.

Modified versions of k-means and similar hard partitional cluster-

ing algorithms [19,26] are very widely used to cluster large datasets

owing to their simplicity and ability to handle both numerical as well

as categorical attributes. The hard k-means algorithm assigns each

data point to the cluster, whose cluster centroid is nearest to that data

point. An optimal hard clustering can be identified with a Voronoi

diagram whose seeds are the centers of the elements of the clus-

ter. Lloyd’s heuristic [24] is a popular choice for optimizing the k-

means objective function. On the other hand, fuzzy clustering does
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not define subsets in the usual sense but rather model each cluster as

a fuzzy set as defined by Zadeh [32]. Perhaps the most widely used

popular fuzzy clustering algorithm is the fuzzy ISODATA clustering or

Fuzzy C-Means (FCM) algorithm which was first proposed by Dunn

[12] and then generalized (by generalizing the value of the fuzzi-

fier) by Bezdek and his co-workers [4,5]. The FCM algorithm assigns

a membership (in [0, 1], subject to conditions discussed in (2a)–(2b))

to each data point indicating its belongingness to a particular cluster.

The memberships to different clusters are inversely related to the rel-

ative distance of that data point from the corresponding cluster cen-

troids. This algorithm uses an alternating optimization (AO) heuristic

[3] to locally minimize the criterion function.

Huang [17] extended the conventional k-means algorithm for cat-

egorical attributes by introducing a simple matching dissimilarity

measure and replacing the mean by mode. The resulting algorithm

was, thus, named as the k-modes algorithm. Later a fuzzy counterpart

of k-modes was also introduced [18]. In this case the membership up-

grading formula closely followed that of the conventional FCM algo-

rithm, with the matching dissimilarity measure.

In practical data clustering situations, all the features that charac-

terize a data point do not bear equal importance. Some features may

even affect the partitioning task adversely. Thus, it is very important

to select the most discriminating features and at the same time to

eliminate the non-discriminative and/or derogatory features prior to

clustering. Each feature may be considered to have a relative degree

of importance (usually mapped to the interval [0, 1]) which should be
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called the feature weight. Feature weighting can be thought of as an

extension of the conventional feature selection that can have weight

values either 0 or 1.

Existing literature on cluster analysis comprises a good volume of

works on both hard and fuzzy clustering coupled with the feature

weighting schemes. The first known approach of integrating variable

weighting as a part of the clustering process dates back to the works

of Sneath and Sokal [30] and Lumelsky [25]. Sneath et al. first used

the term attribute weighting in this context. Subsequently in 1984,

Desarbo et al. [11] used a two-stage SYNCLUS process to estimate

the optimal weights of the features in a k-means clustering frame-

work. Subsequently De Soete [10] proposed a method to derive the

most suitable variable weights for ultrametric and additive tree fit-

ting. This method was used in a hierarchical clustering framework.

Makarenkov and Legendre [27] extended De Soete’s method to op-

timal feature weighting for the k-means clustering. However, use of

the Polak–Ribiere optimization procedure to minimize a squared cost

function involving the weights, considerably reduced the computa-

tion speed of their method. Modha and Spangler (2003) proposed a

method to optimize attribute weights for obtaining the best cluster-

ing through minimization of the ratio of the mean within-cluster dis-

tortion over the mean between-cluster distortion, referred to as the

generalized Fisher ratio Q. Chan et al. [7] developed a new procedure

to generate a weight for each of the attributes from each cluster for

the k-means type algorithms, in context to both numerical and cat-

egorical data. Variable weighting has also been integrated with sev-

eral fuzzy clustering schemes. Keller and Klawonn [21] introduced an

automatically determined influence parameter for each single data

variable for each cluster. Frigui and Nasraoui [14] modified the FCM

objective function by incorporating the feature weights and used an

AO heuristic to find the optimal feature weights besides refining the

cluster centroids. Huang et al. [16] introduced a new step into the k-

means algorithm for estimating the locally optimal feature weights

based on the current grouping of the data. They also analytically in-

vestigated the convergence of the weighted k-means algorithm. This

particular automated weighting concept was extended to the FCM al-

gorithm in [28]. The scheme was also generalized for the Minkowski

metric [9]. Some recent works in the same direction can be found in

[1,8,13,20].

Most of the previously mentioned clustering algorithms used

squared Euclidean distance and introduced the idea of automated

feature weighting in that context. A clustering algorithm can be de-

signed if the proper distance metric is combined with automatic

learning of the cluster centroids, membership values, as well as the

feature weights. The present paper is a humble attempt to general-

ize the automated feature weighting scheme for all separable dis-

tance measures and some non-separable distances like the inner

product induced norms (IPINs) and the polynomial distances. We de-

velop a Lloyd heuristic and an AO algorithm for solving the hard and

fuzzy clustering problems respectively. We investigate the existence

of the optimal points for the optimization tasks under consideration.

We show that the introduced weighting scheme and the solution to

the clustering problems coincide with that of the automated feature

weighted clustering algorithms discussed earlier ([21]; [7,9,14,28]).

We also discussed the advantages of this generalization and its prac-

tical utility.

The rest of the paper is organized in the following way. Section 2

provides a detailed description of the generalized weighting scheme.

Section 3 outlines the algorithms to solve the hard and fuzzy clus-

tering problem with the generalized weighting scheme. Section 4

discusses the mathematical properties of optimization tasks in the

two algorithms developed in Section 3. In Section 5, we show that

the weighting scheme and the corresponding algorithms developed

in some of the aforementioned papers are only special cases of the

newly proposed generalized weighting scheme and the correspond-

ing general algorithm. In Section 6, we present a discussion on how

this concept of automated feature weighting can be extended to the

non-separable distance measures. Finally the paper is concluded in

Section 7 with a brief discussion on the advantages of this generaliza-

tion along with its practical utility and future scope of applications.

2. Variable weighting scheme with separable distances and

inner product induced norms

2.1. General clustering framework

Let X = {x1, x2, . . . , xn}, xi ∈ D ⊆ R
d be the finite set of patterns

(also synonymously called objects, data-points, observations, or fea-

ture vectors) under consideration. To partition the patterns into c

groups with 2 ≤ c ≤ n, the following mathematical program is con-

sidered:

P : minimize fm(U,Z) =
n∑

i=1

c∑
j=1

ui j
md(z j, xi). (1)

subject to

c∑
j=1

ui j = 1, ∀i = 1, 2, . . . , n, (2a)

0 <

n∑
i=1

ui j < n; ∀ j = 1, 2, . . . , c. (2b)

For hard clustering algorithm we have

m = 1, ui j ∈ {0, 1}, ∀i = 1, 2, . . . , n; ∀ j = 1, 2, . . . , c; (2c)

and for fuzzy clustering algorithm:

m > 1, ui j ∈ [0, 1], ∀i = 1, 2, . . . , n; ∀ j = 1, 2, . . . , c; (2d)

where

U = [ui j] is the membership matrix,

Z = {z1, z2, . . . , zc}, z j ∈ S, ∀ j = 1, 2, . . . , c; is the set of cen-

ters of the clusters, S ⊆ R
d; S = (S1 × S2 × . . . × Sd), Sl ⊆ R, with l =

1, 2, . . . , d.

For the Euclidean distance measure, Sl = R; S = R
d , but for some

general distance measures it can happen that Sl ⊂ R. For example,

if the used divergence measure is f divergence [2], Sl = R+, l =
1, 2, . . . , d; S = R

d+. In what follows for sake of notational simplicity,

we consider S = R
d.

Now d(z j, xi) is the distance measure between the jth cluster cen-

ter and the ith pattern. Note that

(a) If separable distance measures are used

d(z j, xi) =
∑d

l=1
d(z jl, xil ).

(b) If IPIN is used, then

d(z j, xi) = (z j − xi)
T A(z j − xi),

where A is any positive definite matrix.

Now, we introduce the weighting scheme in the following way.

Let w j = [w j1, w j2, . . . , w jd]T be the vector of weights of

the d variables of the pattern corresponding to the jth cluster

and the weight matrix be W = [w1, w2, . . . , wc]T . Also let β =
(β1, β2, . . . , βc) be the corresponding vector of exponent parame-

ters for the attribute weights, where β j corresponds to the jth clus-

ter. Then the optimization problem under consideration in (1) can be

modified as follows:

WP : minimize fm,β (U,Z, W) =
n∑

i=1

c∑
j=1

ui j
mdW(z j, xi). (3)

Here dW(z j, xi) is the weighted distance measure between the jth

cluster center and the ith pattern, defined in the following way:
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