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a b s t r a c t

The stochastic watershed is a method for unsupervised image segmentation proposed by Angulo and Jeu-
lin (2007). The method first computes a probability density function (PDF), assigning to each piece of con-
tour in the image the probability to appear as a segmentation boundary in seeded watershed
segmentation with randomly selected seeds. Contours that appear with high probability are assumed
to be more important. This PDF is then post-processed to obtain a final segmentation. The main compu-
tational hurdle with the stochastic watershed method is the calculation of the PDF. In the original pub-
lication by Angulo and Jeulin, the PDF was estimated by Monte Carlo simulation, i.e., repeatedly selecting
random markers and performing seeded watershed segmentation. Meyer and Stawiaski (2010) showed
that the PDF can be calculated exactly, without performing any Monte Carlo simulations, but do not pro-
vide any implementation details. In a naive implementation, the computational cost of their method is
too high to make it useful in practice. Here, we extend the work of Meyer and Stawiaski by presenting
an efficient (quasi-linear) algorithm for exact computation of the PDF. We demonstrate that in practice,
the proposed method is faster than any previously reported method by more than two orders of magni-
tude. The algorithm is formulated for general undirected graphs, and thus trivially generalizes to images
with any number of dimensions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The stochastic watershed method for unsupervised image seg-
mentation was introduced by Angulo and Jeulin [2]. This method
is based on the seeded watershed, which partitions the image into
regions according to a set of seeds. In short, the seeded watershed
first transforms the image so that there is a local minimum at each
seed, and all other local minima are removed [16]. Then the
watershed segmentation algorithm [4,24] is applied, which creates
one region for each local minimum, and places the boundary
between two regions at the highest ridge between the two corre-
sponding local minima. The regions are referred to as catchment
basins, in analogy to the geographical term watershed. This algo-
rithm is typically applied to an edge map (i.e. the input gray value
image has higher intensities at the object edges), and with one seed
for each object or region to be segmented. The boundaries between
the regions then correspond to edges in the original image.

The stochastic watershed estimates the strength of edges in the
image by repeatedly applying the seeded watershed with random
seeds. Each repetition will find a different subset of edges, but
more important edges will be found more frequently. The method
consists of two steps:

1. A probability density function (PDF) is constructed, assigning to
each piece of contour in the image the probability to appear as a
segmentation boundary in seeded watershed segmentation [16]
with N randomly selected seeds.

2. To obtain a final segmentation, unimportant local minima in
this PDF are suppressed and the watershed is computed one
more time. The original paper suggested a volume criterion to
suppress local minima [2], but later a depth criterion was found
to be more useful [3].

In the original paper [2], the PDF was estimated by Monte Carlo
simulation, i.e., repeatedly selecting N random markers and per-
forming seeded watershed segmentation. The drawback of this
approach is that a large number of watershed segmentations must
be performed to obtain a good estimate of the PDF. Angulo and
Jeulin [2] report that 50–100 iterations are typically required for
convergence.
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Meyer and Stawiaski [17] showed that the PDF can be calcu-
lated exactly, without performing any Monte Carlo simulations. A
naive implementation of their method is computationally very
expensive, limiting the practical utility of their results. Here, we
extend the work of [17] by presenting an efficient algorithm for
calculating the exact PDF. We prove that the proposed algorithm
has the same quasi-linear complexity as a single iteration of the
seeded watershed algorithm. We also demonstrate that in practice,
the proposed method is faster than both a naive implementation of
the exact method of [17] and the approximate method of [2] by
more than an order of magnitude. The efficiency of the proposed
method comes from performing the computations suggested by
Meyer and Stawiaski [17] in a hierarchical fashion. In this sense,
the proposed algorithm is similar to algorithms for computing
increasing attributes of morphological hierarchies [19,10]. The
seeded watershed is, in general, not unique. To enforce a unique
solution, the proposed method relies on a strict total ordering of
the edges, imposed by the user.

The stochastic watershed has found some applications, such as
segmentation of multi-spectral satellite images [21,3], character-
ization of the grain structure of nuclear fuel pellets [6], study of
angiogenesis [22], segmentation of granular materials in 3D micro-
tomography [12,13], and detection of the optic disc in fundus
images [18]. However, the computational cost of the Monte-Carlo
simulation that estimates the PDF is a barrier to more wide-spread
use. The algorithm presented here removes this barrier.

2. Preliminaries

We will formulate our results in the framework of edge
weighted graphs. In this context, a digital image is commonly rep-
resented by its pixel adjacency graph, i.e., a graph where each image
element corresponds to a vertex in the graph, and adjacent image
elements are connected by graph edges. With this flexible graph
based representation, the proposed method trivially generalizes
to images with any number of dimensions. It also allows the
method to be applied to other graphs of interest in image process-
ing, e.g., region adjacency graphs derived from an initial over-seg-
mentation of an image. In this section, we introduce some basic
definitions to handle edge weighted graphs.

We define a graph as a triple G ¼ ðG; E; kÞ where

� V is a finite set.
� E is a set of unordered pairs of distinct elements in V, i.e.,

E # ffv ;wg# V jv – wg.
� k is a map k : E! R.

The elements of V are called vertices of G, and the elements of E are
called edges of G. When necessary, V ; E, and k will be denoted
VðGÞ; EðGÞ, and kðGÞ to explicitly indicate which graph they belong
to. An edge spanning two vertices v and w is denoted ev;w. If ev;w

is an edge in E, the vertices v and w are adjacent.
For any edge e 2 E; kðeÞ is the weight or altitude of e. Throughout

the paper, we will assume that the value of kðeÞ represents the dis-
similarity between the vertices spanned by e. Thus, we assume that
the salient contours are located on the highest edges of the graph.
In the context of image processing, we may define the edge
weights as, e.g.,

kðev ;wÞ ¼ jIðvÞ � IðwÞj; ð1Þ

where IðvÞ and IðwÞ are the intensities of the image elements corre-
sponding to the vertices v and w, respectively.

The seeded watershed method, and hence also the method pre-
sented here, depends on an increasing order of the edge weights in
a graph, but not on their exact value [8,9]. To ensure the

uniqueness of the seeded watershed segmentation, we will only con-
sider graphs where each edge has a unique weight, thereby ensuring
a unique increasing order. Graphs that do not fulfill this property can
be easily be converted to the correct format as follows:

1. Fix an increasing ordering of the graph edges, i.e., find a map
O : E! Z such that ei – ej ) OðeiÞ – OðejÞ and OðeiÞ < OðejÞ )
kðeiÞ 6 kðejÞ for all ei; ej 2 E.

2. For all e 2 E, set kðeÞ  OðeÞ.

Let G be a graph. A path in G is an ordered sequence of vertices
p ¼ hv iiki¼1 ¼ hv1;v2; . . . ; vki such that ev i ;v iþ1

2 E for all
i 2 ½1; k� 1�. We denote the origin v1 and the destination vk of p
by orgðpÞ and dstðpÞ, respectively. A path that has no repeated ver-
tices is said to be simple. Two vertices v and w are linked in G if there
exists a path p in G such that orgðpÞ ¼ v and dstðpÞ ¼ w. The nota-
tion v �

G
w will here be used to indicate that v and w are linked on G.

If all pairs of vertices in G are linked, then G is connected, otherwise
it is disconnected.

Let G and H be two graphs. If VðHÞ# VðGÞ and EðHÞ# EðGÞ, then
H is a subgraph of G. A connected component is a maximal connected
subgraph.

Let G be a graph and let p be a path in G. If dstðpÞ ¼ orgðpÞ, then
p is a cycle. A cycle is simple if it has no repeated vertices other than
the endpoints. If G has no simple cycles, then G is a forest. A con-
nected forest is called a tree.

Let G be a graph, and let T be a subgraph of G such that T is a tree
and VðGÞ ¼ VðTÞ. Then T is a spanning tree for G. The weight of a tree
is the sum of all edge weights in the tree. A minimum spanning tree
of G is a spanning tree with weight less than or equal to the weight
of every other spanning tree of G.

3. Exact stochastic watersheds

In this section, we briefly review the method of [17] for exact
evaluation of stochastic watersheds.

In the original formulation of seeded watersheds, the watershed
boundary is composed of a set of pixels. In the framework of edge
weighted graphs, a watershed is instead represented by a
watershed cut [8,9]. Informally, a cut is a set of edges which, when
removed from the graph, separates it into two or more disjoint
connected components.

Let G be a graph. In the method of [17], the hierarchy of
watershed segmentations are represented by a flooding tree, T,
which in our context is equivalent to a minimum spanning tree
of the graph G. Since T has no simple cycles, every set of edges
S # EðTÞ forms a cut on T. Moreover, every set of edges S # EðTÞ cor-
responds to a cut S0 in G, given by

S0 ¼ ev;w 2 EðGÞ j v ¿w
ðVðTÞ;EðTÞnSÞ

� �
: ð2Þ

We say that S0 is the cut on G induced by S. If S is a watershed cut
on T with respect to some set of seedpoints, then the cut induced
by S is a watershed cut on G with respect to the same seedpoints
[8,9]. In fact, there is a one-to-one correspondence between the
set of all watershed cuts on T and the set of all watershed cuts
on G. For the remainder of this paper, we will use this correspon-
dence to compactly represent the stochastic watershed PDF as a
mapping P : EðTÞ ! ½0;1�, where PðeÞ is the probability of e being
included in the watershed cut on T for N randomly selected seeds.

Theorem 1 below, which is due to [17], forms the basis of the
method for exact evaluation of stochastic watersheds. The con-
cepts used in Theorem 1 are illustrated in Fig. 1.
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