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a b s t r a c t

We describe a spatio-temporal feature filtering approach that is appropriate for detecting video events in
public scenes containing from many to few people. This non-discrete tracking – or pattern flow
analysis – is distinguished by the fact that the usual video processing step of object segmentation is omit-
ted; instead motion features alone are used to detect, follow, and separate activity. Motion features
include location, scale, score (magnitude), direction, and velocity. The method entails gradient-based
motion detection and multiscale motion feature calculation to obtain a scene activity vector. We focus
on obtaining these motion features and filtering them to obtain information on activity, with the end-
goal being event detection, classification, and anomaly detection. Examples of information extraction
we show in this paper include: distinguishing anomalous from trend activity via shape of the activity pro-
file over time, detecting event onset and direction of people flow using direction (and feature confidence)
values, and measuring the periodicity of similar activity from magnitude values over time. We demon-
strate utility of the approach on 3 video datasets: hallway, emergency event, and subway platform.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is generally accepted that video scene understanding
becomes more difficult as the number of discretely moving objects
increases. The general approach in video tracking research has
been bottom-up in complexity, that is to detect, segment, and track
one moving object, and then to attempt increasingly greater
numbers until these overwhelm the ability to perform discrete
segmentation and tracking. At some point, complexity also over-
whelms the human visual system’s ability to discretely track, so
it is not unexpected that machine vision succumbs similarly.

Alternatively, a top-down complexity approach, one that tracks
pattern flow versus discrete objects, is increasingly being followed
for crowded scene analysis (Polana and Nelson, 1994; Zelnik-Man-
or and Irani, 2001; Zhong et al., 2004; Wang et al., 2009; Kratz and
Nishino, 2009; Yang et al., 2009; Saleemi et al., 2010). Example
applications include measuring the efficiency of passenger transfer
in subway trains and determining pedestrian flows in malls and
transportation terminals. Besides handling complex scenes, this
approach can often extend down to single-object trajectories. This
ability to yield similarly reliable results across a range of scene
complexities is especially important to systems intended to
function in an unsupervised manner. Of course, there is a tradeoff
between discrete and non-discrete approaches, related to the

presence or absence of information on individual objects, such as
shape, size, and exact number.

Instead of tracking moving objects, our approach is to: (1)
extract motion features – location, scale, score (magnitude), direc-
tion, and velocity; (2) filter the video stream by chosen feature(s)
of interest (e.g., a certain location, a chosen scale of motion, a par-
ticular direction, a velocity range, or a combination of these), and
(3) detect events by activity within chosen feature bounds, i.e.,
by motion feature filtering (O’Gorman et al., 2012).

One distinctive difference with respect to most previous work is
choice and calculation of the motion features. Our features can be
considered to be at a higher level than the common optical flow
based motion features, because they are based upon spatio-tempo-
ral gradients across multiple frames versus frame-differences of
intensity. We claim comparative robustness especially to lighting
differences by using these features. A second distinction of this
work is exclusive reliance upon feature filtering within our rela-
tively rich set of motion features. Although feature filtering has
been employed especially for crowded scene tracking, our ap-
proach builds upon previous methods with the use of higher level
motion features. We make a third distinction to some previous
work of similar application to ours, whose spatial and temporal
precision is limited to relatively coarse quantization. We employ
a multiscale representation and finer granularity in time and dura-
tion of event. We consider precision as especially important for
event detection.

In Section 2, we describe previous work in motion feature
extraction and crowd analysis and describe differences with our
methods. In Section 3, we describe our approach, which entails
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three stages: motion feature calculation, scene activity vector
determination, and event detection. Section 4 shows experimental
results on three datasets showing how our features are used with
respect to different distinguishing characteristics of the data.

2. Background

Motion extraction approaches can be classified under three cat-
egories: (1) background subtraction, (2) optical flow, and (3) spa-
tio-temporal gradients or motion edges. Background subtraction
methods usually employ a mixture of Gaussian (MOG) approach
to store background intensity distribution models and perform
subtraction of these from the current frame (Stauffer and Grimson,
1999; Friedman and Russell, 1997; Cheung and Kamath, 2004). Be-
cause a new background model takes time to differentiate from
change due to true motion, these display error in scenes with var-
iably changing lighting, such as outdoors. Optical flow methods de-
tect motion as local movement of pixel intensities in time (Lucas
and Kanade, 1981; Barron et al., 1994). In contrast to MOG meth-
ods, in which stable background models are built, the optical flow
method detects any intensity change, whether due to motion,
lighting, or variation in an otherwise uniform intensity region. In
addition, the optical flow approach is relatively time-consuming,
spending best-match search time within flat intensity regions
where motion cannot be measured. In Yokoyama and Poggio
(2005), optical flow computation expense is reduced by masking
first by thresholded spatial edge magnitudes. The third category,
spatio-temporal gradients, achieves a higher level of robustness
with respect to lighting and intensity variation by first extracting
spatial edges, and then determining their gradient over time (Kratz
and Nishino, 2009; Gruenwedel et al., 2011). This is because spatial
edges maintain relative consistency across lighting changes, and no
edges exist within regions of uniform intensity, where there is no
information to measure motion.

In Wang et al. (2009), crowded scene analysis is performed as
follows. The video is quantized into 10 � 10 pixel cells and 10-s
long, non-overlapped clips. Codewords for clips are histogram val-
ues derived from optical flow that is quantized to 4 directions.
Hierarchical Bayesian models cluster atomic activities. Unusual
activity is identified as distinct from these clusters.

In Kratz and Nishino (2009), gradient-based motion features are
determined for non-overlapped cuboids (e.g., 30 � 30 pixels and 20
frames). Multivariate Gaussian modeling embodies information of
dominant gradient direction and variance within cuboids. Both
temporal and spatial relationships among cuboids are modeled
using Hidden Markov models, and these enable the method to de-
tect temporal or spatial deviations in activity within crowds of
otherwise normal activity.

In Yang et al. (2009), optical flow features are found and 4-
direction histograms used to describe non-overlapped cuboids
(10 � 10 pixels times 5 s). Cuboids are concatenated to video clips,
and contained histograms are considered words in a bag-of-words
representation. Words are clustered by diffusion map embedding
to find key motion patterns. In Saleemi et al. (2010) this approach
is expanded beyond a single model per cuboid using k-means clus-
tering and a Gaussian mixture model. By linking cuboid models
across space and time, motion patterns are found, for example of
cars going left, right, or straight at an intersection.

Our approach has similarities and differences from previous lit-
erature. Our motion extraction method falls under the category of
spatio-temporal gradients, however it differs from previous meth-
ods in its determination of higher level motion features as will be
described in Section 3.

Another difference involves temporal and spatial scale. We do
not want to restrict ourselves to pre-chosen spatial sizes (full

frames or sub-frame blocks) or temporal lengths (clips or cuboid
lengths). Instead, we use a multiresolution spatial representation.
This has similarities to the space–time interest point approach
(Laptev, 2005) in that spatio-temporal regions of interest are found
in multiscale space, however there are three important differences:
(1) we determine region-of-interest – or activity – upon motion
features rather than pixels, (2) instead of a regular Laplacian pyra-
mid with Gaussian smoothing of pixels between levels, our rela-
tionship between levels is via another function (such as simple
summation of feature values or dominant value, since Gaussian fil-
tering is inappropriate for features versus pixel values), and (3)
time is not treated in multiscale. Instead, we maintain full tempo-
ral resolution so event onsets and endings can be measured with
highest precision.

A final difference is in the focus of this paper. Whereas most ref-
erences cited here devote emphasis to their model and classifica-
tion methodology, ours focuses more fundamentally at the lower
processing level and in particular the choice and calculation of mo-
tion features, and filtering of these to distinguish different events
types. We believe that attention toward improved motion features
at the early processing stage reduces error propagation, and yields
better final event detection.

3. Method

Our method entails three main steps: (1) motion feature calcu-
lation, (2) scene activity vector determination, and (3) event
detection:

Step 1, Motion Features – Spatio-temporal gradients are found as
time differences ‘‘D’’ of spatial differences,

Gtðx; yÞ ¼
D
Dt

DIðx; yÞ
Dx

;
DIðx; yÞ

Dy

� �
ð1Þ

where Gt(x,y) is spatio-temporal gradient at frame t and location
(x,y), I(x,y) is intensity, DI(x,y)/Dx is spatial edge in x (and similarly
in y). The spatial edge can be found by a simple (minimal region)
edge detector, such as Sobel, because larger region (or support) sta-
tistics come into account later. The time difference is between the
current spatial edge image and an exponential moving average of
that edge image.

The Gt(x,y) images are thresholded with respect to a chosen va-
lue s to obtain binary images of significant edges,

G0tðx; yÞ ¼ 1 if Gt > s;0 otherwise: ð2Þ

We create what we term, motion blur images by combining the
current thresholded gradient frame with monotonically decaying
weights wk of k previous frames as follows,

Btðx; yÞ ¼
[K
k¼1

wkG0t�kðx; yÞ ð3Þ

wk ¼W � kþ 1; 1 6 k 6 K; W P K ð4Þ

In (3), the notation indicates a ‘‘weighted logical OR’’, where the
result is not 0 or 1, but wk if G0t�k ¼ 1, or 0 otherwise. (If more than
one G0t�k is equal to 1, then the lowest value weight corresponding
to the longest decayed edge is chosen.) Thus, a motion blur image
contains a high value for edges of the current frame, and 1 less for
the previous frame, etc., for K frames. This image looks like a single
snapshot of edges of an object that moved causing blurring (see
Fig. 1).

Linear regression fits are then applied in x and y to the average
motion blur locations for each frame delay, within w � w
windows around (x,y) locations of each motion blur frame. From
the slope of the fits, qx and qy, the direction of motion h is
calculated,
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