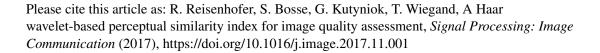
Accepted Manuscript

A Haar wavelet-based perceptual similarity index for image quality assessment

Rafael Reisenhofer, Sebastian Bosse, Gitta Kutyniok, Thomas Wiegand


PII: S0923-5965(17)30218-7

DOI: https://doi.org/10.1016/j.image.2017.11.001

Reference: IMAGE 15299

To appear in: Signal Processing: Image Communication

Received date: 8 May 2017
Revised date: 6 November 2017
Accepted date: 6 November 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment

Rafael Reisenhofer* Sebastian Bosse[†] Gitta Kutyniok[‡] Thomas Wiegand[§]

Abstract

In most practical situations, the compression or transmission of images and videos creates distortions that will eventually be perceived by a human observer. Vice versa, image and video restoration techniques, such as inpainting or denoising, aim to enhance the quality of experience of human viewers. Correctly assessing the similarity between an image and an undistorted reference image as subjectively experienced by a human viewer can thus lead to significant improvements in any transmission, compression, or restoration system. This paper introduces the Haar waveletbased perceptual similarity index (HaarPSI), a novel and computationally inexpensive similarity measure for full reference image quality assessment. The HaarPSI utilizes the coefficients obtained from a Haar wavelet decomposition to assess local similarities between two images, as well as the relative importance of image areas. The consistency of the HaarPSI with the human quality of experience was validated on four large benchmark databases containing thousands of differently distorted images. On these databases, the HaarPSI achieves higher correlations with human opinion scores than state-of-the-art full reference similarity measures like the structural similarity index (SSIM), the feature similarity index (FSIM), and the visual saliency-based index (VSI). Along with the simple computational structure and the short execution time, these experimental results suggest a high applicability of the HaarPSI in real world tasks.

1 Introduction

Digital images and videos are omnipresent in daily life and the importance of visual data is still growing: According to [1], by 2020, nearly a million minutes of video content is estimated to cross the internet every second.

Typically, video and image signals are intended to be ultimately viewed by humans. For transmission or storage, most signals are compressed in order to meet today's channel and/or storage demands. Compression as well as transmission errors can introduce distortions to video or image signals that are visible to human viewers. For evaluating or optimizing a transmission system or parts of it, e.g. by controlling the rate-distortion trade-off of a video encoder, it is crucial to measure the severity of distortions in a perceptually meaningful way. Quality 'in a perceptually meaningful way' can only be measured reliably in psychometric tests. In such tests, participants are asked to rate the subjectively perceived quality of images or videos that have previously been subject to some kind

^{*}R. Reisenhofer is with the Working Group Computational Data Analysis, Universität Bremen, Fachbereich 3, Postfach 330440, 28334 Bremen, Germany (e-mail: reisenhofer@math.uni-bremen.de).

[†]S. Bosse is with the Fraunhofer Heinrich Hertz Institute (Fraunhofer HHI), 10587 Berlin, Germany (e-mail: se-bastian.bosse@hhi.fraunhofer.de).

[‡]G. Kutyniok is with the Department of Mathematics, Technische Universität Berlin, 10623 Berlin, Germany (e-mail: kutyniok@math.tu-berlin.de)

[§]T. Wiegand is with the Fraunhofer Heinrich Hertz Institute (Fraunhofer HHI), 10587 Berlin, Germany, and with the Image Communication Laboratory, Berlin Institute of Technology, 10587 Berlin, Germany (e-mail: tho-mas.wiegand@hhi.fraunhofer.de).

Download English Version:

https://daneshyari.com/en/article/6941643

Download Persian Version:

https://daneshyari.com/article/6941643

<u>Daneshyari.com</u>