
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Runtime hardware Trojan monitors through modeling burst mode
communication using formal verification

Faiq Khalida,⁎, Syed Rafay Hasanb, Osman Hasanc, Falah Awwadd

a Department of Computer Engineering, Vienna University of Technology, Vienna, Austria
b Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, USA
c School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad, Pakistan
d Electrical Engineering Department, United Arab Emirates University, Al-Ain, United Arab Emirates

A R T I C L E I N F O

Keywords:
Hardware Trojans
Runtime monitors
Network on Chip (NoC)
Burst mode communication
Formal verification
Model checking

A B S T R A C T

Globalization trends in integrated circuit (IC) design using deep sub-micron (DSM) technologies are leading to
increased vulnerability against malicious intrusions. Various techniques have been proposed to detect such
threats during design or testing phases of ICs. However, due to infinitely many possibilities of Trojans, there
exists a possibility that some of these intrusions go undetected. Therefore, runtime Trojan detection techniques
are needed to detect the Trojans for complete operation lifetime as a last line of defense. In this paper, we
proposed a generic methodology, which leverages the burst mode communication protocol, to detect the
intrusions during runtime. Our methodology has three phases: 1) behavioral modeling of design specifications
along with its verification using linear temporal logic (LTL) in the model checker. 2) Counterexamples generated
in phase 1 are used to insert run-time monitors at vulnerable paths. 3) Embed run-time monitors into the
system and validate it. Unlike the other state-of-the-art techniques, the proposed methodology can be easily
used to design the runtime monitoring setup without having netlist information of IP modules. We validated our
approach by applying it on the AES Trojan benchmarks that utilize intermodule interface to communicate with
other modules in the system on chip (SoC).

1. Introduction

With the globalization of integrated-circuit chip design-process, the
chances of malicious hardware design intrusion, known as hardware
Trojan, have grown tremendously [1–4]. Hardware Trojans can lead to
many unwanted activities, including leaking confidential information,
changes in the timing characteristics of the circuits, malfunctioning,
denial of service and counterfeiting [2,5,6]. Various techniques have
been developed to detect hardware Trojans. Some of the prominent
works include micro-architecture modification to improve triggering of
the potential Trojan payload during testing phase [7] and the usage of
inherent error detection of quasi delay insensitive (QDI) architectures
to detect malicious intrusions [8–10].

However, the intruder may come with ingenious techniques to
overshadow hardware Trojan detection techniques. For example, in a
SoC design, some hard or firm IPs may hide Trojans depending on the
aging of the chip [42]. The possibility of detecting these Trojans during
the test phase is very low, and they may get activated once the chip is in
use [11]. Runtime approaches, on the other hand, could monitor an IC
for its entire operational lifetime, providing a last-line of defense [43].

Therefore, specialized techniques have been developed to detect the
Trojans during runtime [12–16]. The main drawback of the runtime
techniques has been the large overhead [17], i.e., area overhead [2,44]
in the path delay characterization [18]. Therefore, in order to reduce
the overhead, Forte et al. proposed a temperature sensor based
methodology to detect the Trojans during runtime [19]. This metho-
dology analyzes the abnormal behavior of built-in temperature sensors
of ICs to detect the malicious activities. Similarly, Bao et al. have
improved the temperature tracking by considering the temperature
change due to power leakage [20]. These techniques require a precise
calibration over the environmental changes and process variations, and
also rely on the premise that triggering of payload results in a
substantially higher current flow. Zhao et al. exploited the dynamic
thermal management techniques of ICs to detect Trojans during
runtime [21]. A key feature of this technique is to analyze the thermal
profile of the ICs to obtain the dynamic thermal/power parameters
using the Chaos theory and hence small changes in current flow could
be detected. However, this approach inherits the overhead of the
classification algorithm and majority voting schemes and thus com-
promises the performance of ICs. Recently, Ngo et al. have proposed a

https://doi.org/10.1016/j.vlsi.2017.11.003
Received 23 November 2016; Received in revised form 22 October 2017; Accepted 8 November 2017

⁎ Corresponding authors.
E-mail addresses: faiq.khalid@seecs.edu.pk (F. Khalid), shasan@tntech.edu (S.R. Hasan).

INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Khalid, F., INTEGRATION the VLSI journal (2017), https://doi.org/10.1016/j.vlsi.2017.11.003

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2017.11.003
https://doi.org/10.1016/j.vlsi.2017.11.003
https://doi.org/10.1016/j.vlsi.2017.11.003


methodology to use the hardware property checkers (HPC) for the
runtime Trojan detection [22]. In this methodology, the first step is to
identify and verify the critical behavioral invariants using assertion
based property specification language. These verified critical behavioral
invariants are used to design the HPC, which are then embedded in the
IC to verify the properties during runtime. This method is vulnerable to
Trojan insertions at the netlist or layout levels and presumes access to
IP modules, which eventually results in its limited utility for SoC
designs that require third party IPs.

In this paper, we propose a generic methodology to design runtime
monitoring circuits, which utilizes information from SoC integration
phase only. We treat IPs in the SoC as black boxes with no access to
their internal details are presumed. The proposed methodology con-
sists of two phases: the first is to model the IP modules by translating
their functional characteristics into a behavioral model and obtain
linear temporal logical (LTL) properties. The behavioral model is then
verified using nuXmv [23], which is a symbolic model verification
(SMV) model checker to detect the vulnerable paths against the critical
behavioral invariants. In the next phase, these vulnerable paths are
analyzed to design the runtime monitors. In order to illustrate the
proposed methodology, we have modeled advanced encryption stan-
dard (AES) hardware Trojans benchmarks, available on trust-hub
website [24], in SMV and extracted their counterexamples, in case of
LTL property failures.

This paper presents a runtime-monitoring unit, which is designed
by analyzing these counterexamples. We demonstrated that our
monitoring unit can detect all the AES hardware Trojan benchmarks
that utilize, in some form, the communication network. We proposed to
divide the system into two modes of operation, i.e., normal and testing,
for systems where the burst mode communication is not inherently
used. The system may be switched to test mode by the user in the
presence of suspicious system activity, which can be activated auto-
matically using some sort of optimum scheduling mechanism. In this
mode, the system is forced to use the burst mode communication
protocol for testing communication and runtime monitors to detect any
abnormal behavior. Moreover, in order to reduce the overhead we also
propose three different approaches to place the runtime monitors,
which are namely; global, region based and channel based runtime
monitoring setup. The overhead comparative analysis shows that
effectiveness of each approach depends upon the communication
topology of network on chip (NoC) and number of communicating
modules. In comparison with the state-of-the-art run-time Trojan
detection techniques, our approach does not require the access to IP
design. Moreover, our approach assumes that the defender has access
to the SoC integration unit only, which to the best of our knowledge, is
a most practical and constrained assumption. Our analysis also shows
that power and test-time overhead is comparable in most cases
especially with the proposed region-based runtime monitors.

The main contributions of this paper are as follows:

1. A methodology is proposed to analyze the effects of intruded third
party IP modules in NoC through a burst mode communication
protocol.

2. Our run time hardware Trojan detection technique is implemented
at the SoC integration unit only and no presumptions about IP
modules are made.

3. A novel design of runtime monitors to detect the Trojans in NoC is
proposed, and practically demonstrated.

4. In order to reduce the overhead, we propose three different
approaches to place the runtime monitors, which are namely; global,
region based and channel based runtime monitoring setup

5. We propose an alternative solution that includes the the first come
first serve policy with monitors to handle the active channels and IPs
because in most of the cases, not all IPs in a NoC fail at the same time.

6. We generalized the comparative analysis for the overhead of the
proposed runtime monitoring setup.The rest of the paper is orga-

nized as follows: Section 2 provides some preliminary concepts required
to understand the paper better. An overview of the proposed methodol-
ogy is given in Section 3. Section 4 presents modeling and verification
through the burst mode communication protocol. Section 5 provides the
vulnerability analysis of the burst mode communication. Section 6
explains the proposed runtime monitoring solution, simulated results
and comparison with different proposed runtime monitoring setups with
respect to the NoC topologies. Section 7 discusses the pros and cons of
the proposed approach in comparison to the state-of-the-art techniques.
Section 8 concludes the paper.

2. Preliminaries

This section provides a short introduction to some of the prelimin-
aries to facilitate the understanding of the rest of the paper. To
elaborate on the communication mechanism of standard Bus protocols’
implementation, we are describing fundamental three handshaking
protocols and four most commonly network on chip topologies.

2.1. Handshaking protocol

In the handshaking protocol, the sender and receiver modules
assert and negate the request (R) based on the corresponding assertion
and negation of acknowledgment (ACK) signals. Based on the negation
of request and acknowledgment signals, the handshaking protocol can
be divided into the following three categories [25].

2.1.1. Full Handshake (FH)
In the full handshake protocol, the sender and receiver modules

wait for the acknowledgment from the other module, before initiating
or terminating their respective signals. The sender and receiver
modules communicate with each other using R (request) and ACK
(acknowledgment) signals. First, the sender module asserts a request,
which is detected by the receiver module. After verifying that the signal
is valid, the receiver module asserts an acknowledgment signal. The
sender module negates the request and does not assert a new request
until the receiver module negates its acknowledgment signal.

The state-space model for the full handshake protocol is shown in
Fig. 1 [25]. In this model, the sender module has three states: “IDLE”,
“Assert R” and “Negate R”, which represent the idle mode, assertion and
negation of request (R) signal, respectively. The receiver module has two
states: “Negate ACK” and “Assert ACK”, which represent the assertion and
negation of acknowledgment (ACK) signal, respectively. In this protocol,
the sender receives the data (“D = 1”) to send, it asserts the request (“R =
1”) and waits for the corresponding acknowledgment from the receiver
(“ACK = 1”). After the completon of a data transaction, the data signal is
negated (“D = 0”), the request signal is negated (“R = 0”) and the
corresponding acknowledgment signal is also negated (“ACK = 0”).

2.1.2. Partial Handshake I (PH-I)
The second type of protocol is the partial handshake. In this type of

handshake, the sender and receiver modules do not wait for each other

Fig. 1. State-space model of Full Handshake Protocol [25].

F. Khalid et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6942144

Download Persian Version:

https://daneshyari.com/article/6942144

Daneshyari.com

https://daneshyari.com/en/article/6942144
https://daneshyari.com/article/6942144
https://daneshyari.com

