
Integration, the VLSI Journal 62 (2018) 190–204

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Enhancement of fault collection for embedded RAM redundancy analysis
considering intersection and orphan faults

Štefan Krištofík a,b,*, Peter Malík a

a Institute of Informatics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 07, Bratislava, Slovakia
b Institute of Computer Engineering and Applied Informatics, Institute of Informatics, Slovak University of Technology, Ilkovičova 2, 842 16, Bratislava, Slovakia

A R T I C L E I N F O

Keywords:
Built-in self-repair
Fault collection
Redundancy analysis
Memory repair
Yield improvement

A B S T R A C T

In current semiconductor manufacturing processes, embedded memory yield is often improved by including fault
tolerance techniques such as built-in self-test and self-repair. The improvement depends on the effectiveness
of the memory repair algorithm. One of the existing state-of-art memory repair algorithms with high repair
effectiveness is Selected fail count comparison. In this paper, further enhancement of this algorithm is proposed
to increase its repair rate by considering special fault types during fault collection such as intersection and orphan
faults. For 1 Mb memories with up to 10 spare rows and columns, the experimental results show a significant
memory repair rate improvement of up to 5% over the original algorithm at a small area overhead cost averaging
at 3,7%. Our results also show that the area overhead can be reduced by using an equal amounts of spare rows
and columns, in which case it is negligible.

1. Introduction

Scaling semiconductor memory process technology below 20 nm is
becoming increasingly difficult. Transistor wear out effects increase the
frequency of stuck-open or stuck-on faults. Failure detection, analysis
and repair during the lifetime for memories is necessary. In many cur-
rent MPU and SoC designs, more than 80% of transistors are consumed
by embedded Flash or DRAM memories [1]. In addition, scaling the
density has a negative impact on memory yield. The incorporation of
fault tolerance techniques to test and repair memories is essential to
enhance embedded memory production yield.

Built-in self-repair (BISR) for memories is a well known and estab-
lished fault tolerance technique based on hardware soft redundancy and
memory address reconfiguration. The faulty memory cells are replaced
by spare ones. At each startup, the reconfiguration for a memory (repair
solution) is calculated, stored and all incoming faulty cell addresses
are translated into spare addresses according to the stored solution. A
typical BISR architecture consists of three basic modules. The built-in
self-test (BIST) module detects and localizes faulty cells and sends fault
information to the built-in redundancy analysis (BIRA) module which
based on this information calculates the repair solution and stores it in
the address reconfiguration module.

* Corresponding author. Institute of Informatics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 07, Bratislava, Slovakia.
E-mail addresses: stefan.kristofik@stuba.sk (Š. Krištofík), p.malik@savba.sk (P. Malík).

The key component of BIRA is the redundancy analysis algorithm
(RA). It is responsible for calculating the repair solution. RA typically
has two phases [2]: fault collection (FC) and spare allocation (SA). Dur-
ing the FC phase, fault information is collected and stored using the
fault information storing mechanism. In the SA phase, spares are allo-
cated to replace faulty cells based on the stored information. The block
executing the spare allocation (SA) phase is typically referred to as the
analyzer (i.e., a circuit performing the redundancy analysis). The over-
all memory repair effectiveness of RAs depends on the quality of their
fault information storing mechanisms. RAs with a complex FC scheme
generally have better repair rate (to be defined in Section 2) than RAs
with a simple one.

Many FC schemes were proposed during past three decades. This
work aims to improve the quality of SFCC [2], which is a state-of-art
memory repair algorithm for embedded RAMs in SoC designs. Its FC
scheme has been very successful in the recent years, having been uti-
lized to repair traditional 2D memories [3], block-based 2D memories
[4] and also 3D stacked memories [5]. More specifically, this work aims
to improve the repair rate of SFCC by adding three enhancements to its
FC scheme. The main principle behind the enhancements is to consider
special types of faults during fault collection: intersection and orphan
faults. Experimental results show that a significant repair rate improve-

https://doi.org/10.1016/j.vlsi.2018.02.015
Received 29 December 2016; Received in revised form 10 December 2017; Accepted 28 February 2018
Available online 13 March 2018
0167-9260/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2018.02.015
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2018.02.015&domain=pdf
mailto:stefan.kristofik@stuba.sk
mailto:p.malik@savba.sk
https://doi.org/10.1016/j.vlsi.2018.02.015


Š. Krištofík and P. Malík Integration, the VLSI Journal 62 (2018) 190–204

ment over the original scheme of up to 5% for 1 Mb memories with up
to 10 spare rows and columns can be achieved at a small area overhead
cost averaging at 3,7%. Higher repair rate increases memory reliability
and manufacturing yield and decreases production costs.

The rest of the paper is organized as follows. RA characteristics
are briefly summarized in Section 2. A survey of various existing FC
schemes is also included. Section 3 is dedicated to the description of
the state-of-art FC scheme. The proposed enhancements are described
in Section 4. Experimental results are shown in Section 5 and Section 6
concludes the paper.

2. Related work

Many RAs were proposed during past three decades with various FC
schemes. The quality of RAs is typically evaluated by four parameters
[2]:

• repair rate – the percentage of all faulty memories the algorithm is
able to repair,

• area overhead – the size of the area needed to implement the algo-
rithm on chip,

• repair time,
• the ability to find the optimal repair solution – the solution using

the least possible number of spares.

The ideal theoretical RA would be able to guarantee finding the opti-
mal repair solution while having 100% repair rate, zero area overhead
and repair time. Existing RAs try to find a compromise between the two
most important parameters: repair rate and area overhead.

Based on the way RAs execute their FC and SA phases, they can be
divided into static (sequential execution), dynamic (parallel execution)
and hybrid (combination of the previous two). In modern BISR applica-
tions, only dynamic and hybrid RAs are feasible solutions because static
RAs incur too much area overhead on chip to be feasible and have long
repair times [2].

There are many aspects to consider prior to RA on-chip implemen-
tation [4]. This paper focuses on fault information storing mechanisms.
Existing fault storing mechanisms can be divided into three categories:
no fault storing, fault bitmaps and CAM memories.

2.1. FC schemes

Some earlier simple dynamic RAs do not use any form of fault stor-
ing. Spares are allocated for faults immediately after fault detection.
Examples include all pseudo-random spare allocation strategies where
spares are allocated according to some predetermined order, e.g., row-
first (all rows first, then all columns), column-first (all columns first,
then all rows) and balanced (alternating rows and columns) [6]. RAs
that do not use any form of fault storing are simple, fast and incur low
area overhead. However, spare allocation performed immediately after
fault detection may often lead to low repair rates. Such hasty allocation
decisions may not be the most effective way to allocate spares for mem-
ories. Therefore, these RAs can not guarantee finding optimal repair
solutions. They are best used in cases where low memory fault density
is expected.

The other approach is to use fault bitmaps for storing fault informa-
tion. A fault bitmap represents a mapping of memory cells storing the
information whether the cells are faulty or not. There are three types of
fault bitmaps:

• Complete bitmap – a 1:1 mapping, i.e., the bitmap is the same size
as the memory.

• Compressed bitmap – a small sized, reduced form of the complete
bitmap.

• Maximal-sized bitmap – its size is set to a minimal value that can
still guarantee finding the optimal memory repair solution.

Complete bitmaps are used by some earlier static RAs and are stored
off-chip in the memory of the external tester. After the FC phase is fin-
ished, the bitmap contains all fault information. Next, the SA phase is
executed on the tester and the repair solution is calculated by software
based on the information in the bitmap. Examples of RAs using com-
plete bitmaps include Repair-Most (RM) [7] (repair the row or column
containing the most faults) and the strategies utilizing either compre-
hensive search trees [8] or branch-and-bound algorithms [9] in order
to traverse the space of possible repair solutions and to find the optimal
one. RAs that use a complete bitmap are more complex and take more
time than RAs without fault storing. They also incur very high area
overhead. Therefore, they are not feasible in BISR solutions. However,
their repair rates are very high and they do guarantee finding optimal
memory repair solutions. They can be implemented easily in software
and are best used with external test equipment or as a benchmark to
evaluate repair rates of other built-in RAs.

The compressed local bitmap was proposed to reduce high area
overhead incurred by complete fault bitmaps [10]. Because its size is
usually very small, it can not contain the same amount of fault infor-
mation as the complete bitmap. In case the compressed bitmap is full,
it needs to be emptied before it can be used again, i.e., the SA phase is
executed based on the information stored in the full bitmap. This may
lead to situations where some fault information is not accounted for
during SA, because it could not be stored in the full bitmap. This in
turn will lead to decreasing in repair rates. Some examples of RAs using
compressed bitmaps are mentioned next. Local Repair-Most (LRM) first
proposed the compressed local bitmap [10]. Extended LRM in Ref. [11]
is an extension of LRM for block memories (the differences between tra-
ditional and block-based memories are explained in Ref. [12]). The 3D
repair scheme proposes to utilize spare IO’s in addition to traditional
rows and columns [13]. The Range Checking First Algorithm (RCFA)
divides the bitmap virtually into two parts [14]. All mentioned exam-
ples are hybrid RAs. RAs that use a compressed bitmap are similar
to RAs that use a complete bitmap in terms of complexity and repair
speed, but the reduced bitmap size allows them to be used in built-
in solutions. However, the bitmap size reduction comes at the cost of
decreased repair rates.

The maximal-size bitmap was proposed in Ref. [15] to cope with
the disadvantages of complete and compressed fault bitmaps. Instead of
keeping the size of the bitmap as small as possible, the size is calculated
based on the numbers of used spares before on-chip implementation so
that the algorithm can guarantee finding the optimal memory repair
solution. RAs that use a maximal-size fault bitmap have higher repair
rates than RAs using a compressed bitmap while still being feasible
for built-in solutions. They also do guarantee finding optimal memory
repair solutions. However, the size of the bitmap scales steeply with the
number of spares, e.g., for 5 row and 5 column spares, which are the
typical numbers of spares, the bitmap size would be 1,2 Kb. In addition
to the fault bitmap itself, RA needs an additional storage elements, such
as row and column address registers, fault counters and other logic,
to keep various auxiliary information. This further increases the area
overhead. Published RAs with this type of bitmap are hybrid.

The third approach is to use CAM memories for storing fault infor-
mation. The aim is to completely eliminate the need for fault bitmaps
and all associated circuitry such as row and column address registers,
fault counters and other auxiliary registers and logic [15]. Instead,
the fault information is stored in a group of small CAM memories
which offer all standard memory operations. In addition, they have the
advantage of a very quick search operation [16]. CAMs are periodi-
cally searched through and the stored data are frequently changed and
updated during RA. Spares are allocated based on the contents of CAMs.
Some examples of RAs using CAMs are listed next. Essential Spare Piv-
oting (ESP) allocates spares to repair faulty rows and columns immedi-
ately when the second fault in them has been detected [10]. Modified
ESP (MESP) is an extension of ESP for block memories [12]. Compre-
hensive Real-time Exhaustive Search Test and Analysis (CRESTA) sacri-

191



Download English Version:

https://daneshyari.com/en/article/6942151

Download Persian Version:

https://daneshyari.com/article/6942151

Daneshyari.com

https://daneshyari.com/en/article/6942151
https://daneshyari.com/article/6942151
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 


