
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Improved designs of digit-by-digit decimal multiplier

Syed Ershad Ahmeda,⁎, Santosh Varmaa, M.B. Srinivasb

a Department of Electrical Engineering, BITS Pilani, Hyderabad Campus, India
b School of Engineering and Technology, BML Munjal University, Gurgaon, India

A R T I C L E I N F O

Keywords:
Decimal arithmetic
Digit-by-digit multiplier
Binary-to-BCD converter
Partial product generation
Partial product reduction
Multi-operand addition

A B S T R A C T

Decimal multiplication is a ubiquitous operation which is inherently complex in terms of partial product
generation and accumulation. In this paper, the authors propose a generalized design approach and
architectural framework for ‘digit-by-digit’ multiplication. Decimal partial products are generated in parallel
using fast and area efficient BCD digit multipliers and their reduction is achieved using hybrid multi-operand
binary-to-decimal converters. In contrast to most of the previous implementations, which propose changes
either in partial product generation or reduction, this work proposes modifications at both partial product
generation and reduction stages resulting in an improved performance. A comprehensive analysis of synthesis
results (consistent with IEEE-compliant 16-digit decimal multiplier architecture) indicates an improvement in
delay of 8–29% and a reduced area-delay product of 4–38% compared to similar work published previously.

1. Introduction

Decimal arithmetic is preferred in applications such as financial,
scientific and commercial owing to their higher precision compared to
binary arithmetic [1]. However, these computations are generally sluggish
(slow) and tend to occupy more silicon area. This has led to efforts in
improving decimal architectures to enable high performance and compact
arithmetic circuits [2,3]. Like in binary arithmetic, one of the most vital
and common operations in decimal arithmetic, is multiplication. While a
large body of literature on decimal arithmetic covers serial multiplication
[4,5], parallel (‘word-by-digit’) [6–9] and (‘digit-by-digit’) [10,11] multi-
plication has also been reported. Decimal (BCD) ‘digit-by-digit’ multi-
pliers are appropriate for pipelined computations and result in improved
regularity of the circuits. This regularity, in conjunction with shorter
interconnects, results in improvement in the multiplier performance [12].
Thus, this work focuses on efficient design and implementation of ‘digit-
by-digit’ multipliers [10]. Though, more recent literature shows other
efficient implementations, they are not relevant to present work since
their focus is not on ‘digit-by-digit’ multiplication.

The partial products in ‘digit-by-digit’ multiplication scheme are
generated using BCD digit-multiplier (BDM) and their reduction is
accomplished using a carry-free binary adders, multi-operand binary-
to-decimal (BD) converters and decimal adder. Since BDM is an
important component in partial product generation, we focus on new
and improved designs for BDM cells in this paper. Besides, novel
designs of multi-operand BD converters are proposed to convert the
column binary sum to decimal in partial product reduction. Further, a

hybrid multi-operand BD converter algorithm is proposed and ana-
lyzed for its performance. It is expected that these improvisations
would result in significant savings in terms of area and latency.

Throughout this paper, upper and lower case letters are used to
signify decimal digits and binary bits respectively, where a digit
represents a 4-bit BCD number. The symbols ‘. ’ and ‘ + ’ are used to
denote AND and OR gates while the symbols ‘⊕’ and ‘⊙’ denote XOR
and XNOR operations respectively. Further, the term binary coded
decimal (BCD) is used interchangeably with decimal.

Rest of the paper is organized as follows: Preliminary information
related to the existing decimal multiplication algorithms and previous
work on partial product generation and reduction are provided in
Section 2. An outline of the proposed partial product generation and
reduction schemes in 16*16 ‘digit-by-digit’ multiplier is provided and
discussed in Section 3 and Section 4. In addition, design of hybrid
multi-operand BD converters is described in Section 4.2. A detailed
performance analysis of 16*16 ‘digit-by-digit’ multiplier is carried out
and compared in Section 5 while conclusions are drawn in Section 6.

2. Decimal multiplication

Decimal multiplication architectures typically have the following
stages: (i) partial product generation (ii) partial product reduction and
(iii) final product computation. The ‘digit-by-digit’ multiplication
architecture is presented in Section 2.1 while the various existing
partial product generation and reduction schemes adapted in these
designs are discussed below.

https://doi.org/10.1016/j.vlsi.2017.12.001
Received 24 July 2017; Received in revised form 25 October 2017; Accepted 3 December 2017

⁎ Corresponding author.
E-mail address: syed@hyderabad.bits-pilani.ac.in (S.E. Ahmed).

INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Ahmed, S.E., INTEGRATION the VLSI journal (2017), https://doi.org/10.1016/j.vlsi.2017.12.001

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2017.12.001
https://doi.org/10.1016/j.vlsi.2017.12.001
https://doi.org/10.1016/j.vlsi.2017.12.001

2.1. ‘Digit-by-digit’ multiplier

A step by step implementation of 4*4 ‘digit-by-digit’ multiplication
[10] is illustrated in Fig. 1. Multiplication of each digit of the multi-
plicand with the digit of multiplier is performed using the BDM.

For example, multiplication of A1 and B1 is highlighted in the dotted
circle of the figure. The output of the BDM results in most significant
digit and least significant digit denoted by H and L respectively. A
typical BDM is composed of a 4*4 binary multiplier and a partial
product binary-to-decimal (PPBD) converter. Most of the previous
works available in the literature have focused on PPBD converters at
partial product generation stage which is discussed below.

The individual decimal partial product columns (one such column
is highlighted with dotted rectangle in Fig. 1) are compressed in
parallel by using a tree of binary carry save adders [13] resulting in a
binary number as output of each column. The conversion from binary-
to-decimal is carried out using multi-operand BD (MBD) converters
resulting in rows of decimal digits R R0 − 7 and Q Q1 − 6 which are
eventually compressed using a decimal adder to obtain the final
product P P(0 − 7).

2.2. Existing partial product generation schemes

Existing Binary to Decimal (BD) converters involved in partial
product generation are described in detail in [10,14–17]. The algo-
rithm proposed in [10] converts a 7-bit binary number to a 2-digit BCD
number (DH and DL) to support high performance decimal multi-
plication. This algorithm calculates the contributions for lower BCD
digit D()L and the higher BCD digit D()H from each of the input binary
bits. However, this approach appears to be faulty as pointed out by
Bhattacharya et.al. [14] who modify this algorithm by adding the
contributions in a BCD fashion.

Their approach partitions or splits the binary input into two sub-
parts, that is, three MSBs and four LSBs. It then calculates the
contributions to the two BCD digits and adds them in a BCD fashion
to get the final result. An improved architecture is presented in [15]
that proposes two schemes, ‘three-four split’ and ‘four-three split’
binary to BCD converters. The ‘three-four split’ design has optimized
DL and DH generator blocks resulting in better performance in terms of
delay. The ‘four-three split’ design partitions the 7-bit binary input into
four MSBs and three LSBs. Since the LSBs do not contribute to the
higher BCD digit, the LSB contribution generator is removed resulting
in area savings. However, this comes at the cost of increased complex-
ity of MSB digit generator. The ‘three-four split’ design is faster than

the ‘four- three split’ one whereas the ‘four-three split’ results in a more
area efficient design.

Authors in [17] propose a BD converter based on Shift-Add3
algorithm. The resulting architecture however tends to have large area
and delay due to the redundant contribution blocks. A recent work [16]
introduces new methods for BCD-digit multiplication. The most
effective one among these methods results in what is called a new N2
BD converter whose limitation however is its high latency.

In this work, we propose two different partial product BD con-
verters namely, high-speed PPBD converter and low-area PPBD
converter, to overcome the shortcomings mentioned above.

2.3. Existing partial product reduction schemes

In a scheme proposed by Dadda [13], partial product reduction in
the first stage of ‘digit-by-digit’ multiplier is achieved using a binary
carry save adder structure. The binary result of each partial product
column is subsequently converted to decimal (BCD) using a multi-
operand BD converter consisting of an iterative connection of Nicoud
cells [18], as suggested by Dadda [19]. A typical Nicoud (ND) cell
would accept a 4-bit binary input b()j , multiplies it by two, and then
adds it to bi as depicted in Fig. 2(a). Thus the computation of BCD
(decimal) outputs, b0 (higher digit) and D0 (lower digit), is carried out
using the relation b D b b{ , } = 2 . +j i0 0 where the maximum values of
b0 and D0 are (1)10 and (9)10 respectively.

An example to convert a binary number to two BCD digits (b0 and D0)
is illustrated in Fig. 2(b). Since the binary number (1010011)2 to be
converted here is larger than (19)10, four Nicoud cells are required to
realize the converter. As illustrated in Fig. 2(b), the input to the Nicoud
cell is restricted to (1001)2. Hence the 3 MSBs of binary input along with
‘0’ prepended is accepted as bj and the next significant binary input ‘0’ as
bi resulting in the outputs (1)2 and (0000)2. The 4-bit output (0000)2 of cell
1 along with the next significant binary input ‘0’ form input to cell 2,
resulting in (0)2 and (0000)2. Similarly, the 4-bit output of each
subsequent cell along with residual 1-bit binary input feeds the decimal
input of the following cell resulting in higher P() digit (1000)2 and lower
Q() digit (0011)2. In general, binary number of any operand width can be
converted to decimal by a linear arrangement of Nicoud cells.

The limitation of Nicoud cells however is their latency and thus the
delay of multi-operand BD converter increases with the size of the

A4 A3 A1A2
B4 B3 B2 B1
*

H H H H L L L L
L L L H H H
H H H L L L

H H H
L L L

L
H

L H
H L

R7 R6 R5 R4 R3 R2 R1 R0

Q6 Q5 Q4 Q3 Q2 Q1

P7 P6 P5 P4 P3 P2 P1 P0

Decimal Adder

Final Product

H
L

Higher order byte
Lower order byte
MBD Converters

PPBD

4 * 4 Binary
Multiplier

H L

A1B1

4 4

44

BDM

Fig. 1. Example of 4*4 ‘digit-by-digit’ multiplication using BDMs.

Fig. 2. (a) Compact notation of Nicoud cell (b) Linear array of Nicoud cells to form
Dadda multi-operand BD converter.

S.E. Ahmed et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

2

Download English Version:

https://daneshyari.com/en/article/6942176

Download Persian Version:

https://daneshyari.com/article/6942176

Daneshyari.com

https://daneshyari.com/en/article/6942176
https://daneshyari.com/article/6942176
https://daneshyari.com

