
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Power-gating-aware scheduling with effective hardware resources
optimization

Nan Wanga,⁎, Wei Zhongb, Song Chenb, Zhiyuan Mac, Xiaofeng Linga, Yu Zhua

a School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
b Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
c School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

A R T I C L E I N F O

Keywords:
Scheduling
Power-gating
Retention register
Hardware resources optimization

A B S T R A C T

Power-gating technology has been widely used to reduce subthreshold leakage power. However, the efficiency of
power-gating degrades significantly with the wide use of retention registers. The scheduling algorithms
proposed in this work optimize the number of required retention registers to minimize the leakage power
when the supply voltage of data-path is cut off; in addition, the hardware resources, including functional units,
registers and interconnections, undergo overall optimization to enhance the quality of the scheduling results.
For each possible scheduling result of an operation, the life times of related values are analyzed together to
provide a tight lower bound of active values in each control step, the maximum of which equals the number of
required registers. A max-cost flow-based algorithm is also implemented on a network derived from the current
mobilities, and the total cost over this network evaluates the interconnection benefits of the current schedule.
With an overall analysis of hardware resource usages, the operation scheduling order is finally determined by
iteratively executing a maximum weight independent set-based method. The experimental results show the
proposed algorithms optimize both the leakage power and the area of the circuit by effectively reducing the
hardware resource usages.

1. Introduction

Power consumption has been an important consideration in chip
designs since the 1990s, and dynamic power was optimized from the
beginning. With the development of nanoscale technology, leakage
power has come to dominate the total power consumption, especially in
65 nm technology or below, and chip designers have shifted their focus
to leakage power optimization.

Many technologies have been developed to achieve low leakage
power circuit designs, among which power-gating is especially popular
and has been widely used in the semiconductor industry [1–6]. It cuts
off the current to the blocks of circuit that are not in use to reduce the
leakage power, and the states of the circuit block must be stored before
cutting off the supply voltage. Retention registers are special low-
leakage flip-flops used to hold the data on the normal registers of the
power-gated block, and the state of the block can be retained and then
reloaded when this block is woken up.

There are various studies [7–10] on the implementation of reten-
tion registers, which invariably incur a substantial amount of overhead
in terms of interconnections and leakage power. The study in [11]

reports that a retention flip-flop requires 68% additional area than a
conventional flip-flop, and the overhead area in power-gated circuits
can range from 13% to 28%. Furthermore, the total wirelength of
power-gated circuits typically increases by 29–60% due to the addi-
tional wires for retention flip-flops and extra control signals [11]. A
retention flip-flop is usually fully biased during standby mode to
preserve the state, resulting in a continuous gate leakage current,
which contributes significantly to the total leakage current, and this
situation has deteriorated rapidly with the scaling of CMOS technology
[12].

Consequently, reducing the use of retention storage is an important
issue in optimizing power-gated circuits, and researchers try to
optimize the leakage power of a power-gated circuit by minimizing
the number of retention registers during scheduling because the most
power-saving opportunities exist at the highest level of design abstrac-
tion [13]. A previous study [14] minimizes the number of required
retention registers during scheduling by transferring the optimization
problem into a set of integrated linear programming (ILP) formula-
tions. However, this method cannot be applied to most large bench-
marks because solving ILP formulations is quite time consuming.

https://doi.org/10.1016/j.vlsi.2017.12.005
Received 7 November 2016; Received in revised form 19 October 2017; Accepted 11 December 2017

⁎ Corresponding author.
E-mail address: wangnan@ecust.edu.cn (N. Wang).

INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Wang, N., INTEGRATION the VLSI journal (2017), https://doi.org/10.1016/j.vlsi.2017.12.005

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2017.12.005
https://doi.org/10.1016/j.vlsi.2017.12.005
https://doi.org/10.1016/j.vlsi.2017.12.005

Scheduling also decides the number of functional units (FUs), and
there are a number of studies [16,17] that optimize the number of FUs
during scheduling. In addition, the scheduling result also determines
the registers and interconnections of circuits, which are substantial in
recent complex designs and must be considered at the very beginning
of high-level synthesis. A recent study in [18] indicates that the
registers contribute 36% to the total switching power, and multiplexers
contribute 17% in their benchmarks. Furthermore, registers and
multiplexers contribute 30% and 26% to the total leakage power,
respectively. The study in [19] successfully optimizes the number of
registers during scheduling by formulating a set of ILP formulations
aiming to minimize the total life times of all values. However, this
method does not consider the optimization of retention registers and
other data-path components, which limits its effectiveness.

Unlike other studies that decouple the optimizations of FUs,
registers and interconnections at different stages of high-level synth-
esis, this work tries to optimize these data-path components of an
application specific integrated circuit (ASIC) during scheduling because
scheduling has an overall effect on the final circuit. To analyze the
register usages during scheduling, the life time of each value is divided
into two types: certain life time and uncertain life time; the uncertain
life times of related values are calculated together, and the sum of
certain life times and uncertain life times provides a tight lower bound
of active values in each control step, the maximum of which equals the
number of total registers. Accurately calculate the number of multi-
plexer (MUX) ports during scheduling is impossible, and thus, we
evaluate the interconnection benefits instead. The interconnection
benefit between each pair of operations that can be bound to the same
FU is first evaluated, and a max-cost flow-based algorithm, which
evaluates the total effects of the interconnections, is then conducted on
a network transferred from the compatibility graph. With an overall
analysis of hardware resource usages, the operation scheduling order is
finally determined by iteratively executing a maximum weight inde-
pendent set-based method on a scheduling violation graph. The
experimental results show the effectiveness of our proposed method
in optimizing the retention registers along with other hardware
resources during scheduling.

The rest of this paper is organized as follows. Section 2 provides the
preliminary information and describes the optimization problem.
Section 3 analyzes the register usages and the interconnection cost,
and Section 4 presents two maximum weight independent set-based
scheduling algorithms. Section 5 shows the experimental results, and
Section 6 concludes the paper.

2. Preliminaries and problem definition

The target architecture of this work consists of a data-path that has
FUs, registers, interconnections, and a power management unit (PMU)
that initiates state changes (from active to standby and vice versa)
through a sleep signal, as well as resetting the circuit (see Fig. 1). The

controller, which is a finite state machine (FSM), is assumed to receive
an asynchronous sleep signal from PMU, and subsequently generates a
standby signal to power-gate the data-path, and ret signal to enforce
the state preservation in the retention register. To clarify the high-level
synthesis problem that we are addressing, we assume that:

1. Power-gating is applied to the entire data-path rather than partial of
a data-path.

2. A k-bit retention register has k latches to hold k-bit data in the
standby mode.

3. Among all control steps within the timing constraint, only one of
them involves the actual power gating, and we call this the power-
gating control step cpg. If several power-gating control steps may be
required, our scheduler can easily be extended to support.

2.1. Preliminaries and motivations

The algorithm description is used as the input of the scheduling
algorithm, and it is usually followed by a translation to a graph derived
from the data flow (data flow graph, DFG). The DFG is denoted as
G V E= (,), where V v i n= { |1 ≤ ≤ }i represents the set of operations,
and E represents the set of data dependencies between operations.

Register Requirement: Each operation computes a value that
must be stored in a register and later used by other operations. The
values with non-overlapping lifetimes can share the same register, and
maximizing the sharing of registers by values generates the minimum
number of registers. Two types of registers are required in a power-
gating circuit: normal registers that store the values when the circuit is
active and they will be powered-off when the data-path is power-gated;
retention registers that retain values in the standby state and can also
store values when the circuit is in the active state.

The number of total registers, including normal registers and
retention registers, is denoted as Rtot and calculated as follows.

R max S c c t= {| ()|, ∀ ∈ [1,]}tot j j c (1)

where S c| ()|j is the number of alive values in control step cj, and tc is the
given timing constraint. The number of retention registers Rrr equals
the number of values that are alive in the power-gating control step cpg,
which is given as follows.

R S c= | ()|rr pg (2)

However, cpg is a parameter to be determined rather than a fixed
one in some scenarios. Consequently, Rrr is also described as follows.

R min S c c t= {| ()|, ∀ ∈ [1,]}rr j j c (3)

The register requirements vary with different scheduling results, as
shown by the example in Fig. 2, where tc is 5 control steps, and ALU
and multiplier need one and two control steps to compute an operation,
respectively. Although the numbers of FUs required by these two
scheduling results are the same, the scheduling result in Fig. 2(b) needs
four registers to save the values, while the scheduling result in Fig. 2(c)
needs five registers. Thus, an extra register would be required if we did
not consider it during scheduling.

Number of MUX Ports: The number of MUX input ports is used
to evaluate the interconnections of circuits in this work, and the exact
number of MUX input ports can only be decided after FU binding and
register binding. However, the scheduling result also plays an impor-
tant role in determining the interconnections.

An example in Fig. 3 shows the motivation to consider the MUX
ports when scheduling operations, in which operations are bound to
the ALUs with the same color. Given the first scheduling result shown
in Fig. 3(a), the best binding result is given in Fig. 3(b) with 7 MUX
ports. The second scheduling result is presented in Fig. 3(c), and its
binding result, shown in Fig. 3(d), only requires 6 MUX ports.

The above examples show the effects on the data-path of different
scheduling results, demonstrating the urgent need to optimize theseFig. 1. Example of power-gating circuit.

N. Wang et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

2

Download English Version:

https://daneshyari.com/en/article/6942185

Download Persian Version:

https://daneshyari.com/article/6942185

Daneshyari.com

https://daneshyari.com/en/article/6942185
https://daneshyari.com/article/6942185
https://daneshyari.com

