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a b s t r a c t

This paper proposes new models of GPU energy consumption from the perspectives of hardware
architects and graphics programmers by performing an architecture-independent analysis of the classical
graphics rendering pipeline which is still in widespread use today. The detailed analysis includes gra-
phics rendering workload, memory bandwidth and energy consumption . Although the models are
derived from classical 3D pipeline, they are extensible to programmable pipelines. There are many factors
that affect the performance and energy consumption of 3D graphics rendering, such as the number of
textures, vertex sharing, level of details, and rendering algorithms. The proposed models are validated by
our simulation study and used to guide our 3D graphics hardware design and 3D graphics programming
in order to optimize performance and energy consumption of our GPU prototypes which have been
successfully fabricated in SMIC 0.13 μm CMOS technology.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

VLSI technology has entered the era of billions of transistors on
a single chip. Integration density brought forth the fast develop-
ment of parallel processing engines such as many core CPUs and
massively parallel GPUs. These parallel engines also brought with
them tremendous energy consumption. Since GPUs are widely
used in mobile devices, desk top and laptop computers, and high
performance computers, GPU energy optimization is of paramount
importance to industry.

This paper presents a detailed energy model of 3D graphics
rendering. The results are architecture independent and are
applicable to most type of architectures. Different from previous
modeling effort, our work builds a model that can help (1) GPU
architects in optimizing their design, and (2) graphics pro-
grammers in optimizing their programs.

Modern GPUs [1–3] employ separate shader architectures [4] as
well as unified shader architectures [5,6]. Memory bandwidth
constraints may limit the performance of unified shader GPUs and
software implementations may affect the load balance of separate
shader GPUs.

We present models of GPU energy consumption from the per-
spectives of hardware architects and graphics programmers.
Detailed analysis of energy estimate in every stage of a classical 3D

rendering pipeline is given here. Different from the previous
research, we emphasize that the analysis makes no assumptions
about the hardware architecture, so that the results are widely
applicable. Our research employs forward analysis and builds
detailed models from known graphics rendering algorithms. We
should point out that the focus of this paper is on 3D graphics
rendering, rather than general purpose GPU computing (GPGPU).
The results presented here might not be directly applicable
to GPGPU.

Previous research on GPU performance and power analysis was
mainly found in these areas, (1) characterization of GPU work-
loads, (2) methods and results of measuring existing GPUs and
model building based on measurement results, and (3) GPU per-
formance and power analysis from the perspective of software and
application. These results come from GPU users rather than GPU
designers. Since an exhaustive description of all the previous
research is difficult, we only review the representative efforts in
GPU energy estimation.

Workload characterization studies either the static aspect or
the dynamic aspect of 3D graphics and typically employs either
simulation study, or experimental measurement, or a combination
of both, plus mathematical modeling. Characterizations on 3D
static workload and dynamic workload are found in [7,8]. The
work was done on such characteristics as memory access band-
width, the number of vertices per primitive, and triangles pro-
cessed per frame. The research uses a combination of simulation
work and experimental measurement, using well-known bench-
marks. A characterization on the workload of 3D games is found in
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[9], which characterizes GPU games, in such attributes as average
vertex and pixel shader instructions, utilization different types of
primitives, bus bandwidths, and triangle sizes (at different stages).
A signature-based estimation technique for predicting 3D graphics
workloads is presented in [10]. They showed that monitoring
specific parameters of the 3D pipeline provides better prediction
accuracy over conventional approaches. Signature-based predic-
tion is computationally efficient. A fundamental difference
between signatures and standard history-based predictors is that
signatures capture previous outcomes as well as the cause that led
to the outcome, and use both to predict future outcomes. A study
[11] using the Quake 3 and XRace games as benchmarks on three
mainstream mobile system-on-chip architectures reveals that the
geometry stage is the main bottleneck in 3D mobile games and
confirms that game logic significantly affects energy consumption.

A straightforward method for measuring per-frame energy
consumption of real-time graphics workloads is discussed in [12].
The method is non-invasive, and needs no source code. It is pos-
sible to measure a much wider range of applications. Reference
[13] gives an in-depth quantitative analysis of the power con-
sumption of mobile 3D graphics pipelines, on the effects of various
3D graphics factors such as resolution, frame rate, level of detail,
lighting and texture maps on power consumption. Power estimate
models are built based on the analysis. Statistical models are
constructed based on simulation study and experimental mea-
surements in [14,15]. The models are constructed based on per-
formance counters and power measurements for GPGPU applica-
tions. The SigGraph 2011 course [16] discusses the general prin-
ciples of GPU power consumption and gives some tips about
power optimization. References [17,18] describe GPU performance
and power models derived from rendering pipeline stages and
measurements of existing GPUs. An energy model for a graphics
processing unit (GPU) is given in [19]. The model is based on the
amount and type of work performed in various parts of the unit. It
is able to accurately predict the energy that any arbitrary mix of
operations will take.

In [20], GPU power consumption is investigated from a soft-
ware perspective and GPGPU applications. It studies how and
where the power consumption is located within a GPU board by
analyzing the relations between the measured power consump-
tion, the required time and the type of units. The considered
blocks include register file, memory hierarchy and functional units.
The effectiveness of GPUs for a variety of application types is
discussed in [21] along with some specific coding idioms that
improve program performance on the GPU. It also discusses
advantages and inefficiencies of the CUDA programming model
and some desirable features that might allow for greater ease of

use. In [22], an important biological code that runs in a traditional
CPU environment is taken in the study and is transformed to a
hybrid CPUþGPU environment, which delivers an energy-delay
product that is multiple orders of magnitude better than a tradi-
tional CPU environment. The research investigates via an empirical
study the performance, power, and energy characteristics of GPUs
for scientific computing. Low power programming tips, such as
compressing textures and reducing memory bandwidth, follow
drawing order (front to back), use low precision arithmetic, etc, are
offered in [23]. Wimmer and Wonka [24] study different factors
that contribute to the rendering time in order to develop a fra-
mework for rendering time estimation. Given a viewpoint (or view
cell) and a list of potentially visible objects, they propose several
algorithms that can give reasonable upper limits for the rendering
time on consumer hardware.

2. The 3D graphics pipeline

Graphics rendering is to generate a 2D image frame from a 3D
scene description. The classical graphics processing pipeline
includes several major stages as will be presented in Section 2.1.
Details of graphics primitives will be described in 2.2.

2.1. The rendering pipeline

A typical 3D graphics rendering pipeline is shown in Fig. 1. The
pipeline consists of many computation tasks, including command
processing by FEP (front-end processor), model-view transform of
vertices and vertex normals, unitization of vertex normals, vertex
shading and clamping of shading results, primitive (shape)
assembly, plane clipping, projection transform, frustum clipping
and division by w, back-face culling, rasterization (scan-conver-
sion), pixel shading and fogging, and fragment operations such as
tests and logic operations.

Most stages of the 3D graphics rendering pipeline perform
fixed functions. In addition to the fixed function states, the ren-
dering pipeline may also have a number of programmable stages,
typically including a vertex shader stage and a pixel shader stage.

Graphics rendering is one of those tasks which exhibit the so-
called “embarrassing parallelism”. Many stages in the 3D render-
ing pipeline can be very well parallelized, for example, the vertex
shading stage and the pixel shading stage, and the parallelization
of these stages can be straightforward and without much over-
head. Linear speed ups are obtainable. Performance and power
consumption can be extended from a single shader case to n
shader case by applying a multiplicative coefficient. However,

Fig. 1. The generic 3D graphics rendering pipeline.
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