Accepted Manuscript

A novel wet etching based double-sides interposer structure with deep trenches for 3-D hetero-integration

MICROELECTRONIC ENGINEERING

Manufacturing and Presence or Common with França Les Insures

Manufacturing and Presence or Common with França Les Insures

Marchines Biotechnologies & Systems 2014

Microfilese Biotechnologies & Systems 2014

Adabased: Redenneid and Emmanuel Dolementhe

Chunsheng Zhu, Yingjian Yan, Zibin Dai, Wei Li, Pengfei Guo

PII: S0167-9317(17)30410-0

DOI: https://doi.org/10.1016/j.mee.2017.12.013

Reference: MEE 10685

To appear in: Microelectronic Engineering

Received date: 26 October 2017 Accepted date: 19 December 2017

Please cite this article as: Chunsheng Zhu, Yingjian Yan, Zibin Dai, Wei Li, Pengfei Guo, A novel wet etching based double-sides interposer structure with deep trenches for 3-D hetero-integration. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Mee(2017), https://doi.org/10.1016/j.mee.2017.12.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Novel Wet Etching Based Double-Sides Interposer Structure with Deep

Trenches for 3-D Hetero-Integration

Chunsheng Zhu^{1,*}, Yingjian Yan¹, Zibin Dai¹, Wei Li¹, and Pengfei Guo¹ ¹Institute of Information Science and Technology, Zhengzhou 450001, China

*Corresponding author. (Email: cszhu01@126.com)

Abstract

Through-silicon-via (TSV) interposer has been proved to be a good solution for

three-dimensional integration to achieve high density and improved performance. In this paper, a

novel double-sides silicon interposer structure with deep trenches was proposed to achieve high

density 3-D hetero-integration. The TSVs in the interposer were fabricated by wet etching method on

both sides, which has low cost, good reliability and suitable for batch production. In order to

minimize the TSV size and provide a higher interconnect density as well as retain the mechanical

reliabilities of the interposer, deep trenches were wet-etched before TSV fabrication, which were also

used for chip embedding. To further increase the integration density, multiple interconnects were

attempted to be deposited in a single TSV and their electrical properties were systematically

characterized.

Keywords: 3D integration; Silicon interposer; Anisotropic wet etching; Trench.

1. Introduction

Three-dimensional (3D) integration technologies are being widely developed to address the ever

continuing device miniaturization, system-level integration and performance promoting for the needs

of mobile and digital applications [1-3]. 3D integration requires a physical stacking of die onto

another die or substrate with vertical through-silicon-vias (TSVs) serving as the interconnects. TSV

interposer has been envisioned to be a good solution for 3D hetero-integration to achieve high density

interconnections, improved electrical performance and increased data bandwidth due to shorter

interconnects between the dies, and to minimize coefficient of thermal expansion (CTE) mismatch

induced stress between the dies and the interposer [4, 5].

To fabricate the TSVs, dry anisotropic etching methods such as deep reactive ion etching (DRIE)

1/10

Download English Version:

https://daneshyari.com/en/article/6942604

Download Persian Version:

https://daneshyari.com/article/6942604

<u>Daneshyari.com</u>