## Accepted Manuscript

Suspended DNA structural characterization by TEM diffraction

Monica Marini, Marco Allione, Sergei Lopatin, Manola Moretti, Andrea Giugni, Bruno Torre, Enzo di Fabrizio

PII: S0167-9317(17)30396-9

DOI: doi:10.1016/j.mee.2017.11.020

Reference: MEE 10671

To appear in: Microelectronic Engineering

Received date: 12 October 2017
Revised date: 28 November 2017
Accepted date: 29 November 2017



Please cite this article as: Monica Marini, Marco Allione, Sergei Lopatin, Manola Moretti, Andrea Giugni, Bruno Torre, Enzo di Fabrizio , Suspended DNA structural characterization by TEM diffraction. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Mee(2017), doi:10.1016/j.mee.2017.11.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# **ACCEPTED MANUSCRIPT**

### Suspended DNA structural characterization by TEM diffraction.

Monica Marini<sup>a,\*</sup>, Marco Allione<sup>a</sup>, Sergei Lopatin<sup>b</sup>, Manola Moretti<sup>a</sup>, Andrea Giugni<sup>a</sup>, Bruno Torre<sup>a</sup>, Enzo di Fabrizio<sup>a</sup>

- <sup>a</sup> SMILEs Lab, King Abdullah University of Science and Technology (KAUST), PSE divisions, Thuwal 23955 6900, Kingdom of Saudi Arabia
- <sup>b</sup> Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- \* Corresponding author: monica.marini@kaust.edu.sa

**Keywords**: DNA, super-hydrophobic devices, diffraction, interbases distance.

#### Abstract

In this work, micro-fabrication, super-hydrophobic properties and a physiologically compatible preparation step are combined and tailored to obtain background free biological samples to be investigated by Transmission Electron Microscopy (TEM) diffraction technique. The validation was performed evaluating a well-known parameter such as the DNA interbases value. The diffraction spacing measured is in good agreement with those obtained by HRTEM direct metrology and by traditional X-Ray diffraction. This approach addresses single molecule studies in a simplified and reproducible straightforward way with respect to more conventional and widely used techniques. In addition, it overcomes the need of long and elaborated samples preparations: the sample is in its physiological environment and the HRTEM data acquisition occurs without any background interference, coating, staining or additional manipulation. The congruence in the results reported in this paper makes the application of this approach extremely promising towards those molecules for which crystallization remains a hurdle, such as cell membrane proteins and fibrillar proteins.

#### 1. Introduction

The diffraction pattern taken by Raymond Gosling under Rosalind Franklin [1] supervision, shown in the so-called "Photo 51", has been a milestone for biology. The information contained in the image was crucial for the correct determination of the helical structure of DNA by Watson and Crick [2]. That moment changed the approach to biological sciences, highlighting the needed for new techniques capable to investigate biological matter down to the single molecule scale and below.

### Download English Version:

# https://daneshyari.com/en/article/6942660

Download Persian Version:

https://daneshyari.com/article/6942660

<u>Daneshyari.com</u>