[Microelectronic Engineering 147 \(2015\) 113–116](http://dx.doi.org/10.1016/j.mee.2015.04.062)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/01679317)

Microelectronic Engineering

journal homepage: www.elsevier.com/locate/mee

Effective work function modulation by sacrificial gate aluminum diffusion on HfON-based 14 nm NMOS devices

C. Suarez-Segovia ^{a,b,c,*}, C. Leroux ^b, P. Caubet ^a, F. Domengie ^a, G. Reimbold ^b, G. Romano ^{a,b}, O. Gourhant ^a, V. Joseph ^a, G. Ghibaudo ^c

^a STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles cedex, France ^b CEA-LETI Minatec, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France ^c IMEP-LAHC, Minatec/INPG, BP 257, 38016 Grenoble, France

article info

Article history: Received 21 February 2015 Received in revised form 27 March 2015 Accepted 8 April 2015 Available online 16 April 2015

Keywords: Metal gate Effective work function Dipole Aluminum diffusion CV measurements

ABSTRACT

Sacrificial gate first process efficiency to further increase effective work function (WF_{eff}) towards P+ by metallic aluminum diffusion is demonstrated in this work by combining capacitance vs voltage (CV) measurements on beveled oxides with different spectroscopic techniques. Aluminum diffusion role on WF_{eff} is evidenced and is found to be simultaneously dependent of as-deposited aluminum dose and annealing temperature.

- 2015 Elsevier B.V. All rights reserved.

1. Introduction

The scaling of MOS transistors while keeping overall performances led to the inclusion of high- κ metal gate (HKMG) stack in the conventional $SiO₂/Poly-Si$ gate stack. The effective work function (WF_{eff}) values of metal electrodes must satisfy the V_{TH} requirements of specific devices. In undoped-channel 14 nm Fully-Depleted Silicon on Insulator (FD-SOI) devices, WF_{eff} at only \approx 100 mV from the midgap are required [\[1,2\].](#page--1-0) In order to reach the $\Delta \text{WF}_{\text{eff}}$ specification for PMOS, deposition of Al₂O₃ as high- κ dielectric, or above the high- κ layer [\[3\]](#page--1-0) and insertion of metallic aluminum in TiN gate $[4]$ have already been proposed to shift the WFeff towards P+. Nevertheless, opposite shift of the Al-based metal workfunction towards N+ limits the benefit of dipoles induced by Al diffusion to the high- κ/SiO_2 interface. Even though aluminum ion implantation is very effective in achieving PMOS low V_{TH} , it can induce gate leakage degradation by Al diffusion too deeply near $SiO₂/channel$ interface [\[5\].](#page--1-0) In this work, we evaluate the impact of Al on WF_{eff} and Equivalent Oxide Thickness (EOT) in a sacrificial metal gate-first approach. Moreover, the Al diffusion is studied by X-ray Photoelectron Spectroscopy (XPS) and X-ray

E-mail address: carlos.suarezsegovia@cea.fr (C. Suarez-Segovia).

Fluorescence (XRF) measurements as a function of the aluminum dose, the composition of the TiN layers and the annealing temperature.

2. Device fabrication

Silicon trench isolation (STI) and P-Well implants were carried out on Si (100) wafers before HKMG stack deposition. The gate dielectrics consist of interlayer dielectric followed by a 2 nm thick HfO₂ layer deposited by Atomic Layer Deposition, and decoupled plasma nitridation. Interlayer dielectric is either 1 nm thick SiON for nominal devices or a beveled thermally grown $SiO₂$ [\(Fig. 1](#page-1-0)) to get rid of Si/SiO₂ interface fixed charges $(Q_{Si0₂/Si})$ in WF_{eff} extraction. Then, the sacrificial Si/TiN/Al/TiN gate stacks (Si on top) with different Al doses (0 Å, 2 Å, 6 Å) and TiN compositions ($[N_2]$) $([N₂] + [Ar]) = 0.5, 0.7$ and 1) were deposited, followed by a thermal treatment under N_2 atmosphere at 900 °C or 1000 °C in order to activate the diffusion of Al into the HfON/SiON stack. The sacrificial gate stack is then removed by wet etching. Finally, a Poly-Si/TiN electrode is deposited, followed by gate patterning, as illustrated in [Fig 2](#page-1-0). All metal layers were deposited in Radio Frequency Physical Vapor Deposition chambers. Samples description is summarized in [Table 1](#page-1-0). Devices were completed with S/D formation, S/D dopant activation annealing at 1005 \degree C, NiPt silicide and a 400 \degree C forming gas annealing.

[⇑] Corresponding author at: STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles cedex, France.

Fig. 1. Ellipsometry and CV measurements on bevel oxide along a 300 mm wafer.

Fig. 2. Sacrificial gate first approach scheme.

Table 1

Description of devices with aluminum in sacrificial gate.

	II. oxide	TiN composition Al dose (\AA) $N_2/(Ar + N_2)$		Diffusion annealing
No sacrificial	Revel			Only S/D annealing
TiN80-w/o Al	Bevel	$0.5(51.3 N-at%)$	Ω	900 \degree C
TiN/Al2.0/TiN	Bevel	0.5 (51.3 N-at%)	2.0	1000 °C
TiN/Al2.0/TiN	Nominal	0.5 (51.3 N-at%)	2.0	900 \degree C
TiN/Al6.0/TiN	Nominal	$0.5(51.3 N-at%)$	6.0	900 \degree C
PS/Al2.0/PS		Nominal 0.7 (52.6 N-at%)	2.0	900 \degree C
PS/AI6.0/PS	Nominal	$0.7(52.6 N-at\%)$	6.0	900 \degree C
FN/Al2.0/FN	Nominal	$1(54.6 N-at\%)$	2.0	900 \degree C
FN/AI6.0/FN	Nominal	$1(54.6 N-at\%)$	6.0	900 \degree C

3. Electrical characterization

EOT and V_{fb} were extracted by fitting Poisson Schrödinger quantum simulations with experimental CV measurements on different dies along the wafer $[6]$. Assuming (1) no bulk charge in the dielectrics and (2) independence of V_{fb} with HK thickness, V_{fb} dependence with EOT is given by Eq. (1), where ε_{ox} is the dielectric permittivity of SiO_2 , WF_m and WF_{Si} are the metal and silicon work function relative to vacuum, respectively, and δ denotes the sum of interfacial dipoles $[7]$. WF_{eff} expression is then calculated from V_{fb} using Eq. (2) :

$$
qV_{fb}=WF_m+\delta-Q_{SiO_2/Si}\frac{EOT}{\epsilon_{ox}}-WF_{Si} \hspace{2cm}(1)
$$

$$
WF_{eff} = qV_{fb} + WF_{Si}
$$
 (2)

Fig. 3. WF_{eff} vs EOT for devices with beveled oxide: with Al (annealed at 1000 °C) and without Al (annealed at 900 °C) in sacrificial gate and w/o sacrificial gate. TiN and Al thicknesses are in Å.

Fig. 4. Impact of Al thickness inserted in final gate electrode.

Fig. 5. CV curve as a function of Al thickness in sacrificial gate approach (diffusion annealing at 900 °C). TiN and Al thicknesses are in Å.

The plot WFeff vs EOT for devices with beveled oxide is shown in Fig. 3.

The extrapolation of WF_{eff} to zero EOT allows the assessment of only WF_m and δ , without the impact of Si/SiO₂ interface fixed charges [\[8\].](#page--1-0) Compared to devices for which Al was not included in sacrificial gate stack, we note that Al in sacrificial gate shifts the WF_{eff} \approx 150 meV towards P+. Compared to the final metal approach (Fig. 4), (i.e., metallic aluminum deposited in the Poly-Si/TiN final electrode and no sacrificial gate), the WF_{eff} shift

Download English Version:

<https://daneshyari.com/en/article/6943207>

Download Persian Version:

<https://daneshyari.com/article/6943207>

[Daneshyari.com](https://daneshyari.com)