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Abstract Compressed sensing (CS) is a novel technology to acquire and reconstruct sparse signals below the Nyquist rate. It
has great potential in image and video acquisition and processing. To effectively improve the sparsity of signal being measured and
reconstructing efficiency, an encoding and decoding model of residual distributed compressive video sensing based on double side
information (RDCVS-DSI) is proposed in this paper. Exploiting the characteristics of image itself in the frequency domain and the
correlation between successive frames, the model regards the video frame in low quality as the first side information in the process of
coding, and generates the second side information for the non-key frames using motion estimation and compensation technology at
its decoding end. Performance analysis and simulation experiments show that the RDCVS-DSI model can rebuild the video sequence
with high fidelity in the consumption of quite low complexity. About 1∼ 5 dB gain in the average peak signal-to-noise ratio of the
reconstructed frames is observed, and the speed is close to the least complex DCVS, when compared with prior works on compressive
video sensing.
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The compressed sensing (CS) theory[1−2] put forward by
Donoho and Baraniuk et al. during 2004∼ 2006 shows that
the high dimensional signal can be projected to a low di-
mensional space through an observation matrix incoherent
with the transform basis, as long as the signal is sparse in
a certain transform domain. Using a few observations, the
signal can be reconstructed precisely. Recent years, the
researches on reconstruction algorithm and measurement
scheme based on CS have made significant progress[3−10].
The application of CS theory about video coding is still in
an exploratory stage, but it has showed great development
prospects[11].

In 2006, Wakin et al. obtained sampling data through a
single pixel camera[12], and reconstructed the frames via the
sparsity in the 2-D wavelet domain (referred to as 2D-CS)
and a group of frames via the sparsity in the 3-D wavelet
domain (referred to as 3D-CS)[13]. In order to reduce the
computing burden of image or video compression, Lu put
forward block compressed sensing of natural image (Block-

CS) in 2007[14]. Then, some scholars applied the Block-

CS into video coding[15−16]. It reduced the computational
complexity significantly, however, its reconstructing per-
formance was not ideal. To make full use of inter-frame
correlation between moving pictures for further improving
coding efficiency, some scholars made a CS coding model
for the residual video (referred to as RVCS)[17−18]. During
2009, Do et al. proposed a kind of distributed compressed
video sensing DISCOS architecture[19], Prades-Nebot et al.
suggested the distributed video coding based on CS (DVC-

CS)[20], while Kang et al. studied another version of dis-

tributed compressive video sensing (DCVS)[21]. After 2010,
more and more scholars further researched on video CS
based on frame or block, inter-frame residuals, as well as
distributed video coding[22−26]. While those methods have
improved the quality of video reconstruction to some ex-
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tent, the complexity is also increasing.
To fully utilize the correlation of intra-frame and inter-

frame, a coding algorithm called residual distributed com-
pressive video sensing based on double side information
(RDCVS-DSI) is proposed in this paper to rebuild video
sequence in high fidelity under the conditions of lower com-
plexity.

1 Compressive video sensing

1.1 Compressed sensing

According to the CS theory[1−3], signal xxx can be sparsely
represented under some basis ψψψN×N

xxx = ψψψθθθ, xxx ∈ RN (1)

where θθθ is the transform coefficients of xxx in ψψψ domain.
When θθθ has only S (S ¿ N) nonzero elements, signal xxx
is S-sparse under the basis of ψψψ. Partial Fourier transform,
DCT and DWT are commonly used in sparse transform.
In compressed sampling, signal xxx is projected into a set of
measurement vectors of φφφ to give the measured value yyy, i.e.,

yyy = φφφxxx, yyy ∈ RM (2)

where yyy is an M × 1 measured values matrix, φφφ is an M ×
N measurement matrix (M ¿ N) incoherent with ψψψ[27].
Gaussian, Bernoulli, scramble Fourier and scramble block
Hadamard ensemble (SBHE) have been shown to be good
choices for the measurement matrix φφφ.

Compressed sampling is a dimension reduction process,
which helps reduce the number of collected data from N
to M . However, it also makes the recovery of signal xxx
from measurements yyy an ill-posed problem. The CS theory
states that the reconstruction can be formulated as an lp
minimization problem by solving:

min
θθθ
||θθθ||lp s. t. yyy = φφφψψψθθθ (3)

To solve the above optimization problem, many tech-
niques have been proposed in the literature, e.g., or-
thogonal matching pursuit (OMP)[28], two-step iterative

shrinkage/thresholding (TwIST)[29], gradient projection

for sparse reconstruction (GPSR)[30], and sparse reconstru-
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ction by separable approximation (SpaRSA)[31]. If signal
xxx is 2-D data, the above theory can be directly applied to
image compression combining with existing CS acquisition
device.

1.2 Compressive video sensing

Relative to the CS imaging, compressive video sensing
has more stringent requirements on storage resources and
real-time processing. Simultaneous temporal and spatial
measurement by the 3D-CS is impractical, and thus one
opts for frame-by-frame measurement. The most straight
compressive video sensing scheme 2D-CS, adopting frame-
by-frame CS for image, takes measurement and solution
according to formulas (2) and (3).

For alleviating the huge computation and memory bur-
dens, the Block-CS has been introduced into video cod-
ing. In the Block-CS, each frame is divided into NB non-
overlapping blocks xxxj (sized B × B, subscript j denotes
block indicator), and acquired using a suitable MB × B2

measurement matrix φφφB , then the corresponding yyyj is

yyyj = φφφBxxxj , xxxj ∈ RB×B , yyyj ∈ RMB (4)

It is straightforward to see that (4) applying block-by-
block to an image is equivalent to a whole-image measure-
ment matrix φφφ in (2) with a constrained structure that φφφ

is block diagonal[14, 22],

φφφ =




φφφB 000 · · · 000
000 φφφB · · · 000
...

...
. . .

...
000 · · · 000 φφφB


 (5)

When sparsity transform ψψψ is also a block-based opera-
tor, the frame can be reconstructed by block at the decod-
ing end. In general, block-independent reconstruction will
produce severe blocking artifacts, thus rebuilding by frame
is prior to block. In convenience, we focus on the CS for
video by frame. Since a structural measurement matrix[32]

in the form of (5) is used in this paper, the following scheme
is equally applicable to the compressive video sensing by
block.

According to the temporal redundancy of video, the cor-
relation model between successive video frames xxxt and xxxt+1

can be expressed as:

{
xxxt = xxxc + xxxt u

xxxt+1 = xxxc + xxxt+1 u
(6)

where xxxc is the common portion between xxxt and xxxt+1, while
xxxt u and xxxt+1 u are the specific portions. The RVCS and
DCVS are the two typical schemes for compressive video
sensing based on the above correlation model.

The basic idea of RVCS[17] comes from the traditional
inter-frame coding. By using the same measurement ma-
trix in a group of pictures (GOP), the difference of mea-
surements between adjacent frames is equivalent to the pro-
jection of inter-frame residuals, i.e.,

yyyt+1 − yyyt = φφφxxxt+1 −φφφxxxt = φφφ(xxxt+1 − xxxt) (7)

Therefore, video residuals can be acquired by the single-
pixel camera and a subtraction operation. For the scene of
slow motion or video surveillance, the neighboring frames
are much similar and inter-frame residuals have an inten-
sive sparsity, so it is more conducive to be measured and

rebuilt via CS. But for a general video sequence, the recon-
structing performance changes with inter-frame residuals.

The DISCOS[19] and DVC-CS[20] introducing the tra-
ditional video coding method to key-frame coding demand
the traditional camera to sample those data. In view of low
cost, we only discuss the DCVS[21] in which all frames can
be acquired by CS camera. The DCVS combines the idea
of distributed compressed sensing (DCS) and distributed
video coding (DVC), and it regards video sequences as
the relative sources in the joint sparse model (JSM). Each
frame is taken CS measurement individually at the encod-
ing end, and the non-key frames are jointly reconstructed
based on the side information at the decoding end. As the
coding scheme of DCVS is concise and the decoding algo-
rithm is very flexible, it is especially suitable for many fields
such as low-cost digital camera, power-saving and mobile
video collecting equipment, distributed sensor network, and
so on. However, its reconstruction performance still needs
further improving.

2 RDCVS-DSI

2.1 The basic idea and framework for RDCVS-
DSI

In general, the coding algorithms of RVCS and DCVS
improve the 2D-CS algorithm only in view of inter-frame
correlation between video frames, but not increase the cod-
ing efficiency through their own characteristics. According
to the correlation between successive frames described in
(6), finding an appropriate side information (xxxc), the xxxt

and xxxt+1 can be encoded through compressing the xxxt u and
xxxt+1 u. As the residual sparsity is very strong, it is more
advantageous to carry on CS coding.

This study intends to regard the low quality image of the
original frame xxxl (similar to xxxc) as the side information of
the xxxt and xxxt+1 for reference. The successive inter-frame
model in (6) can be expanded to a related model between
the key frame xxxk and the multiple non-key frames xxxnk in a
GOP, then





xxxk = xxxk l + ∆xxxk

xxxnk = xxxnk l + ∆xxxnk

xxxnk l = f(xxxk l)

(8)

where xxxk l represents the low quality version of the key
frame, xxxnk l represents the low quality version of the non-
key frame, 4xxxk and 4xxxnk represent the residuals between
the key/non-key and its low quality version, and f(·) indi-
cates the relationship between the key and non-key frames
in low quality version.

In order to guarantee quickly obtaining the reference
frame in low quality version both in the encoding and de-
coding ends, the first side information (SI1) is considered
to be generated with a large amount of information and a
few data at the encoding end, and it is sent to the decod-
ing end together with the measurement value, so as to be
quickly converted to the reference information for decoding.
As wavelet transform has a characteristic of time-frequency
scalability, and its main energy concentrates in the low fre-
quency, the wavelet coefficients are taken in the lowest layer
as SI1.

Because there is a strong sparsity in detailed informa-
tion of the difference between the key/non-key frame and
its low quality version in the same GOP, the residuals for a
key or non-key frame can be measured respectively. As the
SBHE has the advantages of good performance, simple op-
eration, less memory, etc., it is suitable for video measuring
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