[Microelectronic Engineering 118 \(2014\) 66–71](http://dx.doi.org/10.1016/j.mee.2013.12.027)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/01679317)

Microelectronic Engineering

journal homepage: www.elsevier.com/locate/mee

Selective wet etching of $Si₃N₄/SiO₂$ in phosphoric acid with the addition of fluoride and silicic compounds $\dot{\mathbf{x}}$

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

article info

Article history: Available online 30 December 2013

Keywords: Selective etching Selectivity Reaction mechanism Silicon nitride

ABSTRACT

Various additives were added to H₃PO₄ in order to achieve a highly selective wet etching of Si₃N₄ to SiO₂. Fluoride compounds such as HF, NH_4F , and NH_4HF_2 were added to the H_3PO_4 in order to increase the etch rate of the Si₃N₄. In addition, silicic compounds, including H_2S iF₆, TEOS, and Si(OH)₄, were added to decrease the etch rate of SiO₂. The addition of the fluoride compounds into the H_3PO_4 increased the etch rate of the Si₃N₄, but the etch selectivity of the Si₃N₄ to SiO₂ decreased due to the greater increase in the etch rate of the $SiO₂$. Both the etch rate and the selectivity showed strong relationships with the amount of fluorine added in H_3PQ_4 . The addition of TEOS and Si(OH)₄ increased the etch selectivity by reducing the etch rate of the SiO₂. In particular, the addition of $Si(OH)_4$ to H_3PO_4 in the presence of NH₄F and NH_4HF_2 produced an etch selectivity greater than 10^4 .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Silicon dioxide (SiO₂) and silicon nitride (Si₃N₄) are dielectric materials that are used extensively in semiconductor devices such as logic and memory devices. They can be used as a passivation layer, an implantation barrier layer, an isolation layer and other applications. However, highly selective etching should be performed for the fabrication of large scale integrated circuits in the presence of both $SiO₂$ and $Si₃N₄$ on the wafer surface; for example, on the shallow trench isolation (STI) structure for submicron devices $[1]$. Generally, $Si₃N₄$ is highly resistant to many chemicals, but it is etched in H_3PO_4 by the following process [\[2\]](#page--1-0):

$$
3Si_3N_4 + 4H_3PO_4 + 27H_2O \rightarrow 4(NH_4)_3PO_4 + 9H_2SiO_3 \eqno{(1)}
$$

when focusing on the etching of $Si₃N₄$, the etch selectivity is defined as the etch rate of the $Si₃N₄$ film over that of $SiO₂$, since the $Si₃N₄$ film is etched in boiling H_3PO_4 at a much higher rate than SiO_2 [\[3\]](#page--1-0). A well-defined STI fabricated by highly selective etching produces smaller junction leakage current and junction capacitance $[4]$ as well as better device performance $[5]$. On the contrary, low etch selectivity induces a variation in the effective field height [\[1\].](#page--1-0) Etch selectivity is critical; however, it is not desirable to lower the etch rates of both the $Si₃N₄$ and $SiO₂$, because slow etch rates reduce the process efficiency. Therefore, an etching process that produces high etch selectivity of $Si₃N₄$ to $SiO₂$ and has a high $Si₃N₄$ etch rate is required.

It has been reported that the etching of $Si₃N₄$ forms hydrated silica and ammonium phosphate in the etchant $[2]$. The hydrated silica slows down the etching of the $Si₃N₄$ and $SiO₂$ thin films, because the reaction system tends to maintain equilibrium. Therefore, it was determined that both the etch rate and the selectivity are affected by the presence of dissolved silicic material in the etching bath. In addition, the water content in the bath affects the etch rate of $Si₃N₄$ [\[6\]](#page--1-0). While the reaction equation of $Si₃N₄$ etching is given as Eq. (1) , the etching of SiO₂ is not described well by Eq. (1). Etching of $SiO₂$ is determined by the H⁺ concentration decomposed from H_3PO_4 , $H_2PO_4^-$, and HPO_4^{2-} as well as the water content [\[6\]:](#page--1-0)

$$
SiO2 + 4H+ + 4e- \rightarrow Si + 2H2O
$$
 (2)

Taking into consideration the etching reaction mechanisms of $Si₃N₄$ and $SiO₂$ shown in Eqs. (1) and (2), it has been shown that the addition of several additives can improve the etch selectivity of $Si₃N₄$ to $SiO₂$ by controlling the reaction mechanism [\[1,6,7\].](#page--1-0) The most common method for improving etch selectivity in the past has been to suppress the etching of the $SiO₂$.

For example, the addition of hydrofluorosilicic acid (H_2SiF_6) into H_3PO_4 improved etch selectivity of Si_3N_4 to SiO_2 by inhibiting the etching of the $SiO₂$ and accelerating the etching of the $Si₃N₄$ within a certain temperature range [\[7\]](#page--1-0). It has also been reported that the addition of $H₂SO₄$ significantly reduced the etch rate of $SiO₂$, thereby increasing the etch selectivity $[8]$. However, the amount of added H_2SO_4 in H_3PO_4 was as high as 75 vol.% and only produce a few-fold higher etch selectivity $[8]$.

 $*$ Presented at the SEMATECH Surface Preparation and Cleaning Conference, April 2013.

Corresponding author. Tel.: +82 2 2123 5754; fax: +82 2 312 6401. E-mail address: swlim@yonsei.ac.kr (S. Lim).

^{0167-9317/\$ -} see front matter © 2014 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.mee.2013.12.027>

In this study, two kinds of additives were added to the H_3PO_4 : fluoride compounds to increase the etching of $Si₃N₄$ and silicic compounds to suppress the etching of $SiO₂$. The addition of fluoride $compounds$ to the solution may produce F^- , which is known to primarily etch $Si₃N₄$ [\[9\]](#page--1-0). Also, this addition may generate difluoride $(HF₂)$, which is a primary source of $SiO₂$ etching [\[9–11\]](#page--1-0). However, in strong acidic solution such as H_3PO_4 , it is unlikely for anionic fluoride species like F⁻ and (HF_2^-) to exist. Therefore, the correlation of the fluoride compound concentration with the etch rate and selectivity was studied. In particular, the effects of the addition of two different kinds of additives on the etch rates of $Si₃N₄$ and $SiO₂$ and the wet etch selectivity of $Si₃N₄$ to $SiO₂$ were investigated.

2. Experiments

In order to study the selective etching of $Si₃N₄$ to $SiO₂$, wafers with low pressure chemical-vapor-deposited (LPCVD) $Si₃N₄$ and $SiO₂$ were prepared. Then, the wafers were cut into 2 \times 2 cm. Phosphoric acid (85% H_3PO_4 , OCI Co., Ltd.) was used as the primary etchant. For the purpose of increasing the etch rate of $Si₃N₄$, three types of fluoride compounds were added to the H_3PO_4 : hydrofluoric acid (HF, 48 wt.% in water, Sigma–Aldrich), ammonium fluoride solution (NH4F, 40% in water, Sigma–Aldrich), and ammonium hydrogen difluoride (NH₄HF₂, 99.999%, Aldrich). In order to inhibit the etching of $SiO₂$, three types of silicic compounds, hydrofluorosilicic acid (H_2 SiF₆, 40%, DC Chemical Co., Ltd.), tetraethyl ortho-silicate (TEOS, $Si(OC₂H₅)₄ \ge 99.9%$, Sigma–Aldrich), and monosilicic acid $(Si(OH)_4, 99.9\%$, Sigma-Aldrich), were added to the H_3PO_4 . After the addition of the additives, a PFA-coated magnetic bar was put into the bath, and the etchant was stirred on a stirrer for 15 min. The etching bath was covered with a glass lid and sealed with parafilm in order to prevent the evaporation of the etchant. Then, the etchant was heated until the temperature reached 165 °C. The $Si₃N₄$ wafer was first immersed in the etchant for 15 min. After the $Si₃N₄$ wafer was taken out of the etchant, the $SiO₂$ wafer was immersed in the etchant and etched for 15 min. In STI layer processing, both $Si₃N₄$ and $SiO₂$ etching occurs simultaneously rather than sequentially. However, we discovered from our preliminary study that better reproducibility in etch results could be achieved in a sequential etch process, which is why, in the current study, $SiO₂$ has been etched in a bath where products such as hydrated silica from the preceding $Si₃N₄$ etch are pre-existing. Thus, we expected the effect of fluoride and other additives on the etching of $SiO₂$ to be easily observed, with reduced impact of the hydrated silica in the solution due to a sequential etch process. In addition, fresh wafers were used for each run. On the other hand, in order to investigate the effects of the etching cycle on the etch rates and selectivity, five groups of each $Si₃N₄$ and $SiO₂$ were successively etched for 10 min in the same etchant. In that case, $Si₃N₄$ and $SiO₂$ films were etched simultaneously. A deionized (DI) water rinse was performed after each etching process. The etch rates of $Si₃N₄$ and $Si₂$ were calculated by measuring their thicknesses before and after each etching process using a spectroscopic ellipsometry (MG-1000, Nano-View). An incident angle of 69.48° was used. The thicknesses at nine different locations were measured and averaged. The etch selectivity was calculated by dividing the etch rate of the $Si₃N₄$ by that of $SiO₂$.

3. Results and discussion

In order to increase the etch rate of the $Si₃N₄$, the following fluoride compounds, HF, NH₄F, and NH₄HF₂, were added to the H₃PO₄. Fig. 1(a) shows the changes in the etch rates of $Si₃N₄$ and $SiO₂$ depending on the concentrations of HF, NH_4F , and NH_4HF_2 . The etch rate of the $Si₃N₄$ increased with the concentrations of all fluo-

Fig. 1. (a) and (b) Etch rates of $Si₃N₄$ and $Si₂$ films and (c) etch selectivity of $Si₃N₄$ to $SiO₂$ with the addition of HF, NH₄F, and NH₄HF₂.

ride compounds. However, the $SiO₂$ etch rate also increased as the concentration of the fluoride compounds increased. Although SiO₂ is etched primarily by difluoride (HF_2^-) and Si_3N_4 is etched by monofluoride (F^-) when they are present in dilute aqueous solution $[9-11]$, those anionic species may not exist in 85% H₃PO₄ even after the addition of HF, NH_4F , and NH_4HF_2 . Instead, the addition of fluoride compounds such as HF, NH_4F , and NH_4HF_2 can produce volatile SiF₄ and H_2 SiF₆ by reaction with the hydrated silica dissolved in aqueous solution $[12]$. As a result, the etch rate of $SiO₂$ as well as that of $Si₃N₄$ increases due to the reduced concentration of hydrated silica in the bath, $[SiO₂]_{aq}$.

On the other hand, it is reported that NH4F can be dissolved and ionized into NH⁺ and F⁻, and NH₄HF₂ can be ionized into NH⁺ and HF_2^- [\[13\]](#page--1-0). In this case, the concentration of HF_2^- would be higher with the addition of NH_4H_2 than with NH_4F , and a higher etch rate of $SiO₂$ and a lower etch rate of $Si₃N₄$ would be observed with the addition of NH_4HF_2 , as compared with the addition of HF and NH_4F . However, an increase was observed in both the etch rates of $Si₃N₄$ and $SiO₂$ with the addition of $NH₄HF₂$, as shown in Fig. 1a, which implies that the etching of $Si₃N₄$ and $SiO₂$ was not driven by F^- and H F_2^- . Therefore, the etch rate of Si_3N_4 and SiO_2 is thought

Download English Version:

<https://daneshyari.com/en/article/6943651>

Download Persian Version:

<https://daneshyari.com/article/6943651>

[Daneshyari.com](https://daneshyari.com)