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a b s t r a c t

The width-dependent performance of armchair GNRs-FETs is investigated by developing a fully analytical
gate capacitance model based on effective mass approximation and semiclassical ballistic transport. The
model incorporates the effects of edge bond relaxation and third nearest neighbor interaction as well as
thermal broadening. To calculate the performance metrics of GNR-FETs, analytical expressions are used
for the charge density, quantum capacitance as well as drain current as functions of both gate and drain
voltages. Intrinsic gate delay time, cutoff frequency and Ion=Ioff ratio are also calculated for different GNR
widths. Numerical results for a double-gate AGNR-FET operating close to quantum capacitance limit
show that nanoribbon widths of about 3–4 nm at most are required in order to obtain optimum on/off
performance.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, has recently emerged as a potential candidate for
nanoelectronics since its high mobility and carrier velocity prom-
ises ballistic devices with high switching speeds [1–3]. In graph-
ene, the charge carriers in the two-dimensional (2D) channel can
change from electrons to holes with the application of an electro-
static gate with a minimum density at the charge neutrality point
(Dirac point) characterizing the transition. However, the on-cur-
rent to off-current ratio of graphene channel field effect transistors
(FETs) is very small due to the lack of a bandgap. As a result, mono-
layer graphene is not directly suitable for digital circuits, but is
very promising for analog, high frequency applications [4]. Inter-
estingly, if graphene is patterned into nanoribbons, using planar
technologies such as electron beam lithography and etching, a size-
able bandgap opens due to quantum confinement effect in the
transverse direction. The bandgap of a GNR depends on its width
and edge orientation. Zigzag edged nanoribbons have a very small
gap due to localized edge states. No such localized state appears in
an armchair graphene nanoribbon (AGNR). Using first principle ap-
proach, Son et al. [5] have shown that the band gap of an AGNR
arises from both the quantum confinement and the edge effects.
As a consequence, FETs with AGNR channels (AGNR-FETs), showing
complete switch off and improved on–off current ratios, can be
considered as building blocks for future digital circuits.

Numerical modeling of GNR-FETs is usually based on a ‘top-of-
the barrier’ approach under ballistic transport [6,7]. An extension

of this approach in order to describe both ballistic and diffusive
transport in graphene devices has been recently proposed [8]. More
accurate ‘atomistic’ models are based on self-consistent non-equi-
librium Green’s Function (NEGF) formalism in both real and mode
space basis [9,10], in some cases including phonon scattering [11]
and disorder [12]. Such atomistic numerical models are computa-
tionally very expensive and motivate the need for analytical model-
ing [13,14]. Zhao et al. [14,15] have proposed a semi-analytical
model for the characteristics of GNR-FETs which requires an itera-
tive procedure for calculating the top of the barrier potential, carrier
concentration and quantum capacitance for each bias point. In this
work, the performance of armchair GNR-FETs is investigated by
developing a fully analytical ballistic model where the carrier con-
centration is calculated by using the effective mass approximation
in the density of states along with a well known relation between
gate voltage and source Fermi energy [22]. Effective mass approxi-
mation is quite accurate in narrow GNRs since their band dispersion
curves are approximately parabolic. Moreover, since edge bond
relaxation and third nearest neighbor (3NN) interaction have great
impact on the band structure of GNRs [16], we have considered
these factors in our calculations. The model is simple and computa-
tionally efficient with no iterations or numerical integration in-
volved. In order to calculate the performance metrics of GNR-
FETs, analytical expressions are provided for the charge density,
quantum capacitance as well as drain current as functions of gate
voltage. Gate delay time, power-delay time product and cutoff fre-
quency are calculated for different GNR widths. Since significant
performance improvement is expected for nanodevices in the
quantum capacitance limit QCL [17], a double-gate AGNR-FET oper-
ating close to QCL, is considered.

0167-9317/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.mee.2013.04.011

⇑ Tel.: +30 211 400 2009; fax: +30 210 8074606.
E-mail address: gskliros@ieee.org

Microelectronic Engineering xxx (2013) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Microelectronic Engineering

journal homepage: www.elsevier .com/locate /mee

Please cite this article in press as: G.S. Kliros, Microelectron. Eng. (2013), http://dx.doi.org/10.1016/j.mee.2013.04.011

http://dx.doi.org/10.1016/j.mee.2013.04.011
mailto:gskliros@ieee.org
http://dx.doi.org/10.1016/j.mee.2013.04.011
http://www.sciencedirect.com/science/journal/01679317
http://www.elsevier.com/locate/mee
http://dx.doi.org/10.1016/j.mee.2013.04.011


2. Device structure

The device structure used in our study is shown in Fig.1(a). Dou-
ble-gate geometry is considered with gate-insulator HfO2 of thick-
ness tins ¼ 1 nm and relative dielectric constant j=16. The source
and the drain region are assumed to be highly doped extensions
of the GNR channel so that the source Fermi energy entered the
conduction band. The power supply is set VDD ¼ 0:5 V and room
temperature (T = 300 K) is assumed. Since thin and high-j gate
insulator is employed, we can expect excellent gate control to pre-
vent source-drain direct tunneling. Moreover, the quantum capac-
itance limit (QCL), where the small quantum capacitance
dominates the total gate capacitance, can be reached. As it is
known [17,24], in the QCL, the potential distribution within the
channel is determined by the gate potential rather than the chan-
nel charge and thus, electrostatic short channel effects are sup-
pressed. However, to account for such effects that may be
important when the device operates far from the QCL, phenomeno-
logical capacitances describing the electrostatic coupling between
the channel and the source/drain should be considered [15].
Fig. 1(b) shows the atomic structure of armchair graphene nanorib-
bon (AGNR) where carbon atoms are arranged in a honeycomb lat-
tice and carbon–carbon (C–C) bonds at the edges are bonded to
hydrogen atoms to terminate dangling bonds. All C–C bond lengths
are taken as acc ¼ 0:142 nm and hence, the width of the ribbon is
given by W ¼ ðN þ 1Þ

ffiffiffi
3
p

acc=2, where N is the number of atoms in
its transverse direction [16].

3. Simulation model

3.1. Effective mass and band structure

In order to proceed with the development of an analytical mod-
el based on the effective mass approximation, we first need an
expression for the energy bands of AGNRs. It has been verified that
a 3NN tight binding model incorporating the edge-bond relaxation
can accurately predict the band structure of GNRs [16]. The 2NN
interaction, which only shifts the dispersion relation in the energy

axis but does not change the band structure, can be ignored. Using
a Taylor expansion around the charge neutrality point, the band
structure of an AGNR can be written as [16]

E�n ðkxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

C;n þ ð�htnkxÞ2
q

ð1Þ

with

EC;n ¼ c1 1þ 2scosðnhÞð Þ þ c3 1þ 2cosð2nhÞð Þ

þ 4ðc3 þ Dc1Þ
N þ 1

sin2ðnhÞ ð2Þ

and

ð�htnÞ2¼ð3accÞ2 �
1
2

sc1cosðnhÞ� c1þc3ð1þ2cosð2nhÞþ4ðc3þDc1Þ
Nþ1

sin2ðnhÞ
� ��

�c3 c1þ2c3cosð2nhÞþ4ðc3þDc1Þ
Nþ1

sin2ðnhÞ
� ��

ð3Þ

where h ¼ p=ðN þ 1Þ;� indicates the conduction band and valence
band respectively, N is the total number of carbon atoms in the rib-
bon, n denotes the subband index, and EC;n is the band edge energy
of the nth subband. The first set of conduction and valence bands
have band index s ¼ �1. Due to the symmetric band structure of
electrons and holes, one obtains for the energy gap EG;n ¼ 2EC;n. Also,
c1 ¼ �3:2eV and c3 ¼ �0:3eV refer to the first and third-nearest
neighbor hopping parameters and Dc1 ¼ �0:2eV is used for the cor-
rection to c1 due to edge bond relaxation effect. The electron effec-
tive masses at the bottom of the conduction band is given by

m�n ¼
EC;n

t2
n
: ð4Þ

It is worth noting that the electron effective mass is an energy-
dependent variable which can be calculated using the E� k disper-
sion relation. A plot of the effective mass of the first conduction
band (in units of the free electron mass), as a function of electron
energy for AGNR of different widths, is shown in Fig. 2(a). As it is
seen, the effective mass is very low at the band minimum, however,
as we move away from the band minimum, it increases rapidly with
energy. Moreover, GNRs with N ¼ 3pþ 1, where p is an integer,
have larger effective masses at the conduction band minimum than
the GNRs with N ¼ 3p. An additional point for each GNR-family is
that, at a given energy away from the band minimum, the increase
of the GNR width causes the increase of effective mass. On the other
hand, as is shown in Fig. 2(b), the effective mass at the band mini-
mum decreases as the ribbon width increases.

Assuming a ballistic channel, the carriers with þk and �k states
are in equilibrium with Fermi energies of the source ðEFSÞ and the
drain ðEFDÞ respectively, with EFS ¼ EF and EFD ¼ EF � qVD. Thus,
the carrier density inside the channel is given by

n1D ¼
1
2

Z 1

EC;n

DðEÞ fSðEÞ þ fDðEÞ½ �dE ð5Þ

where

DðEÞ ¼ 1
p�h

X
n>0

ffiffiffiffiffiffiffiffiffiffi
2m�n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� EC;n

p HðE� EC;nÞ ð6Þ

is the total 1D density of states (DOS) and H denotes the unit step
function. fS;DðEÞ are the Fermi–Dirac probabilities which, at temper-
ature T, are expressed as

fS;DðEÞ ¼
1

1þ eðE�EFS;DÞ=kBT
ð7Þ

where kB is the Boltzmann constant. After integrating, Eq. (5) yields

n1D ¼

ffiffiffiffiffiffiffiffiffiffiffi
kBT

2p�h2

s X
n>0

ffiffiffiffiffiffiffi
m�n

p
F�1=2ðgn;SÞ þ F�1=2ðgn;DÞ
h i

ð8ÞFig. 1. (a) Schematics of double-gate GNR FET where a semiconducting AGNR is
used as channel material. (b) The atomic structure of an AGNR where all edge
dangling bonds are terminated by hydrogen atoms.
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