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A B S T R A C T

Microfluidic biochips are revolutionizing the traditional biochemical experiment flow with their high execution
efficiency and miniaturized fluid manipulation. To improve the flexibility of such chips, Programmable Microflu-
idic Devices (PMDs) have been introduced, with valves and channels built as a regular array. To take advantage
of this new architecture, design automation methods have started to appear, but an efficient test generation
algorithm is still unavailable. In this paper, we propose to generate test patterns based on spanning trees for this
architecture. Compared with previous work, the proposed method is around 100 times faster, while the number
of test patterns is still comparable.

1. Introduction

Microfluidic biochips are revolutionizing the traditional biochem-
ical experiment flow with their high execution efficiency and minia-
turized fluid manipulation [1]. On such a chip, biochemical assays are
executed at the nanoliter level and the execution is controlled by a
microcontroller without human intervention. The efficiency and relia-
bility of such miniaturized and automated chips endow them with a
great potential in biology laboratories and health-care centers.

A flow-based microfluidic biochip is constructed from basic com-
ponents such as micro channels and valves. Flow channels are used
to transport reaction samples and reagents between different loca-
tions. Control channels are built above flow channels to conduct air
pressure to valves in order to control the flow of fluid, as illus-
trated in Fig. 1(a), where three valves are constructed at the shown
intersections. Since the channel width has been miniaturized down
to 50 μm [2] thanks to the advance of manufacturing technology,
a huge number of channels and valves can already be integrated
into a single biochip to perform large-scale experiments and diag-
noses.

With valves as basic controlling components, complex devices can
be constructed. For example, mixers can be built using channels and
valves to execute mixing operations, which are very common in bio-
chemical applications. The structure of a mixer is shown in Fig. 1(b),
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where the three valves at the bottom can drive a circular flow by peri-
stalsis to mix fluid samples and reagents. In a biochip, such devices are
connected by channels to form a transportation network.

In a biochip, the transportation of fluid samples and the execution
of mixing operations are realized by valves built between channels. In
Fig. 1(b), the alternate switching activities of the three valves drive a
flow inside the loop-shaped channel for mixing. This channel, however,
needs not to be round to implement the mixing function. In general,
three valves are sufficient to form a small mixer. Bigger mixers can be
formed using more valves. This observation has been demonstrated in
Ref. [3], where a regular valve array is built to form Programmable
Microfluidic Devices (PMDs) [1,3].

A part of the large valve array in Ref. [3] is shown in Fig. 2(a)
to demonstrate the architecture of PMDs. In this architecture, valves
(solid blocks) are arranged in a regular structure along horizontal and
vertical flow channels (light color). These valves are controlled by air
pressure sources through control channels (narrow channels). Trans-
portation paths can be formed by opening and closing specific valves
on the array, respectively.

Besides transportation channels, mixers can also be constructed on
the valve array directly, taking advantage of the flexibility and recon-
figurability of this architecture. For example, a 4 × 2 mixer and a
2 × 4 mixer can be constructed as in Fig. 2(b) and (c), respectively.
In such a dynamic mixer, the eight valves along the enclosed channel
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Fig. 1. Components and structure of flow-based biochips. (a) Valves constructed at intersections of flow/control channels [1]. (b) Mixer built with valves as the
peristalsis drivers [1].

function as peristalsis valves. Compared with the traditional mixer in
Fig. 1(b), these dynamic mixers have a different shape and more peri-
stalsis valves, eight in each case, to form a strong circular mixing flow.

Moreover, the two mixers in Fig. 2(b) and (c) can share the same
area on the biochip as shown in Fig. 2(d), provided that they are not
used at the same time.

On the valve array, a given area can execute various functions such
as mixing and flow transportation, as well as detection if the corre-
sponding sensors are included in the area. With this flexibility, the
design flow of biochips can be simplified significantly, since the depen-
dency between operations of a bioassay and dedicated devices is not
required anymore. In addition, this flexible architecture enables fault-
tolerance easily. If any valves on the array do not work properly, the
operations can be moved to other areas to maintain the function of the
biochip.

In recent years, design and optimization methods for such biochips
have started to appear quickly. For high-level synthesis, the top-down
flow in Ref. [4] generates a biochip architecture and minimizes the

Fig. 2. Dynamical operation execution on PMD. (a) Architecture [3]. (b)/(c)
A 4 × 2/2 × 4 dynamic mixer. (d) Dynamic mixers of different orientations
sharing the same area.

execution time of the bioassay, while the method in Ref. [5] minimizes
valve switching activities during architectural synthesis. The concept of
general modeling of devices is introduced in Ref. [6] to improve the
efficiency of the synthesis process, and special devices such as sieve
valves are considered in Ref. [7]. On system level, the concept of dis-
tributed channel storage in flow-based biochips is also explored in Refs.
[8,9].

The placement of devices and routing of channels in flow-based
biochips are dealt with simultaneously in Ref. [10] using a sequence-
pair representation, and they are formulated as a SAT problem in Ref.
[11] to achieve a close-to-optimal result. Physical design considering
obstacles is investigated in Ref. [12] and solved using a rectilinear
Steiner minimum tree.

Control logic synthesis is investigated in Ref. [13] to reduce the
number of control pins. The method in Ref. [14] minimizes pressure
propagation delay in the control layer to reduce the response time of
valves and synchronize their actuations. Switching patterns of valves
are examined in Refs. [15,16] to reduce the largest number of switch-
ing activities in the control logic to avoid potential reliability problems.
Furthermore, codesign of flow layer and control layer is investigated
in Ref. [17] to achieve valid routing results on both layers iteratively,
and length-matching is incorporated in routing control channels in Ref.
[18] as well. Moreover, flow-layer, control-layer and valve switching
are considered together in Refs. [19,20] to simplify overall design com-
plexity.

When flow-based biochips are manufactured, defects may appear
at valves and channels, leading to chips not functioning correctly. To
deal with such manufacturing defects, fault models and an ATPG-based
test strategy for flow-based biochips are proposed in Refs. [21,22].
Design-for-testability and defect diagnosis are further addressed in Refs.
[23,24].

Since PMDs are very promising for experiments in future biochem-
ical labs and health-care centers due to their flexibility and fault-
tolerance, their specific features have also been explored. The method in
Refs. [25,26] takes advantage of the flexibility of dynamic mapping to
reduce the switching activity of valves. In addition, the method in Ref.
[27] avoids channel crossing efficiently during construction of dynamic
flow paths. Furthermore, valve control sequences on such an architec-
ture are investigated in Ref. [28]. For test of manufacturing defects,
however, only one method has been proposed in Ref. [29]. This method,
unfortunately, relies on an ILP (Integer Linear Programming) formula-
tion. Consequently, it requires much time to generate proper test pat-
terns and for large valve arrays even cannot return valid solutions.

In this paper, we propose an efficient test generation method based
on spanning trees. The proposed method is several orders of magni-
tude faster than the method in Ref. [29], while producing comparable
results. In Section 2, we explain two major types of manufacturing faults
and formulate the test problem. In Section 3, we describe the proposed
test pattern generation using spanning trees in detail. In Section 4, we
demonstrate the performance of the proposed method and compare it
with [29]. Finally, conclusions are drawn in Section 5.
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