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A B S T R A C T

Droplet-based microfluidics is capable of being a superior platform for biological and biomedical applications due
to their higher accuracy, throughput and sensitivity, low reagent consumption and fast reaction time. However,
the complex and nonlinear behavior of multiphase microfluidic devices and several parameters affecting droplet
size simultaneously necessitates costly design iterations to generate droplets with the radius of interest for a
certain application. To address this, we exploit soft computing methods to bridge fuzzy systems and neural
networks in order to build an adaptive neural-fuzzy inference system (ANFIS) that predicts the droplet size
generated in a flow-focusing microfluidic device based on six major parameters, that includes geometry, flow,
and fluid properties. This model shows a significant accuracy with a coefficient of determination of 0.96 when
compared to the observed data points. Once the ANFIS model is built and verified, we use it to study the effect
of each input parameter on droplet size which is challenging and/or expensive to determine experimentally.

1. Introduction

Microfluidics has provided new opportunities and accelerated the
progress in several fields including chemistry, medicine, pharmaceuti-
cal and biomedical engineering [1–4]. Micrometer-scale feature size,
high surface to volume ratio and predictable laminar flow inherent
to microfluidic devices provide a unique environment for researchers
in the field of life sciences to explore the novel physics that gov-
erns the field [5,6]. Droplet-based microfluidic devices offer numerous
advantages over continuous-flow microfluidics, such as accurate vol-
ume and concentration control, high throughput, high sensitivity, low
sample and reagent consumption and low thermal mass, which lead
to faster, cheaper and more accurate results [7,8]. However, microflu-
idic devices are still not widely used in life science laboratories, as
the community would have expected a decade ago [5,9]. High bar-
rier of entry to the fabrication process, the complexity of the govern-
ing physics and costly and time-consuming device iterations to reach a
desired performance, have kept the field of microfluidics from being
extensively deployed by most of the research groups in the field of
life sciences. Some studies have addressed the fabrication cost issues
by proposing cost-efficient substitutes to photo-lithography [10,11].
Nonetheless, designing a droplet generator is heavily reliant on sev-
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eral design iterations and experience of the designer to perform as
required for a certain application. This is due to the fact that there are
several parameters acting simultaneously which determine the droplet
size [12]. To clarify the complex governing physics of droplet gener-
ation, some studies explained droplet generation with dimensionless
numbers through a number of simplifying assumptions [13]. Scaling
laws were also suggested for T-junction droplet generation [14], how-
ever, weak control over droplet size and undefined droplet break-up
point led researchers to adopt flow-focusing droplet generators as the
standard method of microfluidic droplet production [15]. However, the
complexity of the governing physics in flow-focusing devices has pre-
vented accurate prediction of droplet size through scaling laws [16].
Therefore, predictive models which explain the role of each param-
eter on the performance of the device and approximate the droplet
size based on given inputs can be extremely useful. These models
are capable of clarifying the effects of the parameters that are hard
to determine experimentally. Moreover, they can play a significant
role in reducing the development time of droplet-based microfluidic
devices.

Soft computing methods such as fuzzy logic and neural networks can
be used to make predictions of systems behavior and performance [17].
Fuzzy systems are capable of converting logical statements to math-
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Fig. 1. The overall flow of building an ANFIS predictive model. In this study, we
identified six effective parameters in determining droplet size in microfluidic
flow-focusing droplet generation. We built a dataset of input-output relations
using an experimentally verified numerical model. Using this dataset we trained
and verified our proposed ANFIS model. Through the ANFIS model we studied
the effects of each parameter on droplet size which is difficult and/or expensive
to carry out experimentally.

ematical equations, thus, serving as a tool for simplifying the repre-
sentation and modeling of complex systems [18]. More importantly,
fuzzy logic is capable of grouping and clustering data to several cat-
egories. However, fuzzy systems are unable to learn from data and
evolve to become more accurate overtime [19]. On the contrary, artifi-
cial neural networks are able to learn from data to accurately capture
input-output relations. The ability of neural networks in discovering
the nonlinear relations between inputs and output and establishing a
complex dynamic model of these data is significant [20,21]. However,
when dealing with a system that behaves differently depending on the
state of the system, neural networks will lose their accuracy, unless,
multiple neural networks are proposed for each state of the system. To
avoid this, and exploit the clustering power of fuzzy systems and learn-
ing capabilities of neural networks, adaptive neural-fuzzy inference sys-
tems (ANFIS) were introduced [22]. ANFIS models enable researchers
to match any given input-output relation regardless of its complexity or
nonlinearity, even if the system has multiple modes.

In this paper, we present an accurate predictive ANFIS model that
converts six major inputs of a microfluidic droplet generator to an out-
put droplet radius. Once we verify the accuracy of the ANFIS model
with an observed dataset, we investigate how changes in input param-
eters affect the droplet size to further clarify the governing physics of
microfluidic flow-focusing droplet generation, as shown in Fig. 1. Also,
this model can be further utilized to reduce the number of costly design
iterations required for developing microfluidic droplet-based devices.
The remainder of this study is as follows. In Section 2 and 3, we intro-
duce microfluidic flow-focusing droplet generation and its design space
that we used to build an input-output dataset. In Section 4, we build
and train the proposed ANFIS model, also, we introduce the underlying
fuzzy membership functions for each input parameter. The accuracy
of the ANFIS model is verified in Section 5, by comparing the data
predicted by ANFIS to the dataset derived from the numerical model.
Finally, we use this verified model to study the effects of each parame-
ter on droplet radius.

2. Microfluidic droplet generation

Microfluidic flow-focusing droplet generation can be achieved by
flowing an aqueous phase and a non-aqueous fluid through a narrow

Fig. 2. Microfluidic droplet generation can be achieved by flowing an aque-
ous and a non-aqueous phase through a narrow channel called orifice. (a) The
schematic and the flow direction of water and oil in a flow-focusing geometry.
(b) A numerical model of microfluidic droplet generation in COMSOL Multi-
physics environment (c) An experimental snapshot of microfluidic droplet gen-
eration, using Mineral oil as the non-aqueous phase and DI water as the aqueous
phase.

channel called orifice as shown in Fig. 2. The geometry of the microflu-
idic flow-focusing device is adopted from Ref. [15]. Due to the pres-
ence of a nozzle, which creates a unique velocity field, this geometry
produces monodispersed droplets with a superior control over droplet
size and its breaking point. Normally, to characterize how variations
in droplet generation parameters affect the droplet size, one would
have to build numerous different devices, testing each device at dif-
ferent flow conditions and fluid properties. This process can be very
expensive and time-consuming. Moreover, although some parameters
such as geometry, oil, and water flow rate can be varied and studied
experimentally, the effects of other parameters such as surface ten-
sion, oil viscosity, and density are hard to study experimentally due
to the limited number of available water and oil combinations. There-
fore, to clarify the impact of these parameters on droplet size, a numer-
ical model of microfluidic droplet generation was developed and veri-

74



Download English Version:

https://daneshyari.com/en/article/6944863

Download Persian Version:

https://daneshyari.com/article/6944863

Daneshyari.com

https://daneshyari.com/en/article/6944863
https://daneshyari.com/article/6944863
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 
	tooltip zref@5: 
	tooltip zref@8: 


