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A B S T R A C T

Light emitting diodes (LED) have found widespread use for lighting and displays in recent times due to their
high efficiency, favorable form factor, impact resistance, robustness, reliability and prolonged lifetime. The
extended times to failure of LEDs make the problem of lumen maintenance life prediction for LED light sources
using traditional reliability-based failure data collection and analysis methods quite challenging. Therefore,
one has to resort to using prognostic approaches such as Kalman or particle filters applied to real time de-
gradation data to make inferences on the remaining useful life (RUL) of such devices. The standard prognostic
approach for predicting lumen maintenance life relies on an underlying degradation model with pre-
determined parameters from previous stress tests. However, these model parameters may vary quite a bit from
device to device and for different manufacturing batch lots, thereby leading to large prediction errors. To
address this issue, it would be better to learn the model parameters from the current measurement data di-
rectly. This study aims to achieve this by estimating the parameter values using the Expectation Maximization
(EM) algorithm. Kalman smoothing is then applied to the identified parameter values for predicting the lumen
maintenance life of the LED. The accuracy of the EM – Kalman smoothing approach was tested and compared
with the standard nonlinear least square (NLS) approach prescribed by the TM-21 standard as well as the
standard particle filter approach (without EM). Our results show that the EM method can give better, if not,
similar RUL prediction accuracy with respect to the NLS and standard particle filter (PF) algorithms. Moreover,
the accuracy of RUL prediction using our proposed algorithm is insensitive to the choice of the initial model
parameter values, which paves way for this algorithm to be used in practice for automated predictive analytics
of degrading electromechanical systems.

1. Introduction

Light-emitting diodes (LEDs) are popularly used in recent times for
indoor lighting, street lamps, communication, medical devices, adver-
tising displays, electronic gadget screens, decorative lighting and much
more [1]. LED light sources are known for their high efficiency, en-
vironmental resilience, mechanical toughness, high reliability and long
lifetime, with claims of the mean time to failure extending to 50,000 h
or longer [2–4]. However, owing to their inherent prolonged reliability
[5,6], it becomes expensive and time consuming for LED developers to
predict the life for LEDs using traditional accelerated run-to-failure life
testing, which provide us with the statistical distribution of the time to
failure data. Moreover, accelerated test results only provide an overall
perspective of the population to estimate the mean and variance in the
lifetime distribution, but do not provide specific lifetime information on
any particular LED under study. This necessitates the use of prognostics

and health management (PHM) techniques for real-time or offline
prediction of the remaining useful life (RUL) of the LED based on past
and current time-based gradual degradation of its luminous intensity.

Most PHM algorithms for micro-optoelectronic devices start with an
underlying degradation model, which can be physical/phenomen-
ological or empirical depending on our depth of knowledge of the
failure physics of the device under study. One of the common models
prescribed for LED lumen degradation is the single exponential model
[7,8], LM%= B exp (−αt), where LM refers to the lumen maintenance
and {B,α} are the model parameters to be estimated. Wang and Lu [9]
later extended this model to a bi-exponential model for better re-
presentation of the lumen degradation trends in LEDs and Cai et al. used
a composite exponential model for the same [10]. The choice of the
exponential model was purely empirical here based on the generic
trend of the data observed. Other than the exponential family of
models, the lumen degradation prediction has also been accomplished
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in the past using a fully physics based rate kinetics theoretical model
[11], Wiener process [12], Brownian motion process [13] and Gamma
process [14,15].

The generic approach to estimate the model parameters of the de-
gradation models above has been to adopt the non-linear least square
(NLS) method, which is also recommended by the TM-21 standard
(refer to Appendix A for more details). However, it is apparent from
several studies by Fan et al. [16–18] that the NLS method suffers from
poor prediction accuracy as it does not account for the perturbations
inherent in the measurement and uncertainties in the model and the
operating conditions. As such, the use of NLS is not a preferred option
for RUL prognosis in most practical scenarios.

As a better alternative, particle filter-based (PF-based) approaches
[19–21] have become more popular for prognosis of lumen degradation
in LEDs as they are able to handle non-linear degradation trends as well
as non-Gaussian noise perturbations. Particle filter is a well-known
general nonlinear filtering method [22]. It is simple and easy to im-
plement and applicable to a wide range of degradation scenarios.
However, the downside of the PF method is that it requires initializa-
tion of the parameters by non-linear curve fitting, as shown by Fan et al.
in Ref. [18], where five out of nine devices under test (DUTs) were used
as training samples for initializing the parameter values for the PF
method. In the event of the initial parameters being considerably off
from their true values due to lack of prior knowledge, the sequential
Monte Carlo procedure yields erroneous or very widely distributed re-
sults for the predicted RUL. It is therefore essential to have a robust
approach to parameter initialization before the PF algorithm or any of
its variants can be used for actual prognosis. The other issue with the PF
is its computational load which makes it less suitable for on-line
prognosis in real-time.

This paper examines the use of the Expectation-Maximization (EM)
algorithm for estimating the parameters of the degradation model di-
rectly from the data, thereby bypassing the initialization step. The same
data from a DUT can be used for both parameter value estimation and
remaining useful life prediction of lumen degradation. We also show in
this paper that the simple linear filtering method (Kalman-based) may
be sufficient enough for predicting lumen maintenance life of LEDs (due
to its pseudo-linear degradation trends) with the same accuracy and
much lower computational load. The estimated parameter values from
our EM algorithm will be used within the Kalman filtering (linearized)
framework for prediction of lumen degradation and RUL estimation.

2. Model framework for parameter estimation and prognosis

In prognosis and remaining useful life (RUL) prediction, it is nor-
mally assumed that the parameter values of the state-space model are
reasonably well known and only the future states need to be estimated.
However, in practical cases, the parameter values are unknown as well.
In this section, we first describe the essence of the Expectation
Maximization (EM) algorithm for parameter estimation of a linear state
space system. Subsequently, we will show how the outcome from the
EM algorithm can be applied for parameter estimation and prediction of
lumen degradation trend and eventual failure.

2.1. Parameter estimation for linear state space model by expectation-
maximization (EM) algorithm

Let us consider the estimation of vector parameters θ from the linear
state space model:
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where qk−1∼N(0,Q(θ)), rk∼N(0,R(θ)) are Gaussian process and
measurement noise, xk is the system state and yk represents the mea-
surement data. The problem to be addressed here is to find an estimate

for
⌢θ from T measurements, {y1,…,yT}.
The model in Eq. (1) can be described in a probabilistic form as

follows:
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where x0 denotes the initial condition and {m0(θ), P0(θ)} are the initial
mean and covariance.

The full posterior joint distribution can then be formed by the
Bayesian rule:
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The full posterior density can then be integrated with respect to the
states to yield a marginal posterior of the parameter:

∫=p p dθ y x θ y x( | ) ( , | )T T T T1: 0: 1: 0: (5)

The maximum likelihood estimation of the parameters can then be
found by
⌢ = pθ θ ymax( ( | ))Tθ 1: (6)

However, this formulation requires the computation of a high-di-
mensional integral in Eq. (5). The EM method relies on recursively
computing an approximation of Eq. (5) as given by:
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where p(yk|xk,θ) is the measurement model and p(xk|y1:k−1,θ) is the
predictive distribution which satisfies the relationship:
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Therefore, the problem in Eq. (6) can now be solved by minimizing
the negative log-likelihood:
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The objective function in Eq. (10) can be minimized using the gra-
dient method. However, the gradient method may not guarantee an in-
crease in the value of Lθ(y1:T). In contrast to the gradient based esti-
mation method, the EM algorithm is an iterative procedure, whereby the
lth step seeks an estimate, θ(l), that guarantees Lθ(l)(y1:T) > Lθ(l−1)(y1:T).
The main idea of the EM approach is to consider the joint likelihood
function with respect to both measurement and the states, Lθ(y1:T,x1:T).
Since x1:T={x1,…,xT} is not available, the value for Lθ(y1:T,x1:T) is
approximated by using the minimum variance estimation, φ(θ,θ(l)), of
the joint likelihood function Lθ(y1:T,x1:T), where
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