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A B S T R A C T

Lifetime prognostic based on the degradation data has been widely investigated and adopted for reliability
assessment and maintenance policy. However, the measurement error (ME) is usually inevitable, which leads to
the bias of lifetime estimation and erroneous evaluation of the safety risk. In this paper, we mainly focus on an
inverse issue: how to specify the sensor's performance (i.e., the ME range) for satisfying a given requirement of
the lifetime estimation. Under this consideration, we first analyze the probability distribution functions of the
lifetime estimation with/without the ME based on Wiener process degradation model. Then a distance measure
based on the relative entropy is formulated to evaluate the difference between these two lifetime estimations.
Furthermore, the permissible ranges of the time-dependent and time-independent ME are attained under a given
allowable bias of lifetime estimation according to the proposed distance measure. In addition, the influence of
the ME on maintenance policy is discussed. Finally, numerical examples and a case study are provided to il-
lustrate.

1. Introduction

Lifetime estimation (or remaining useful life estimation, RUL esti-
mation), an important way for evaluating systems' health, has been
widely applied to many industrial systems and gained much attention
[1, 2, 3]. Accurate lifetime estimation can provide an important evi-
dence for maintenance decision, and further can decrease the property
loss and avoid casualties caused by the system's failure [4, 5, 6, 7, 8].
Particularly, statistical data-driven approach, an effective way to
achieve a precise lifetime estimation, has been well exploited in nu-
merous researches [9, 10]. In general, two kinds of the observed data
are available for the statistical data-driven approach in practice, i.e.,
failure-time data and degradation-path data [11, 12]. Correspondingly,
there are two general methods for lifetime estimation: failure-time data
analysis and degradation-path data modeling [11, 13]. Compared with
the former, lifetime estimation based on the degradation-path data
modeling can predict the future failure and achieve the same accurate
results with much fewer testing samples. What should be noticed is that
under the framework of the statistical data-driven approach, the de-
gradation path is regarded as a stochastic process such as Wiener pro-
cess, Gamma process, Inverse Gaussian process and so on. Accordingly,
its lifetime and RUL are defined as random variables rather than the
fixed value, which can reflect the uncertainty and randomness of the
estimated lifetime better. Thus, we mainly focus on the lifetime

estimation based on the statistical degradation-path model in this
paper.

Traditionally, if the degradation data of the deteriorating system are
available, then we can model the degradation path and then its lifetime
could be derived. However, due to the system's characteristics, mea-
surement procedure, operator's skill, environment changing, and other
factors, perfect measurement is impossible in practice, which means
that the measurement error (ME) is inevitable [14, 15]. Hence, the
effect of the ME should be considered for the lifetime estimation based
on degradation-path data. By now, many researchers have addressed a
variety of approaches to identify the ME and the parameters of de-
gradation model [14, 15, 16, 17, 18]. In 1995, Whitmore [15] first
investigated how to deal with the degradation model with the ME,
where the randomness of the ME was described as a Gaussian random
variable. Following his work, Tang et al. [17], Ye et al. [14, 19] studied
how to estimate the lifetime based on different degradation model with
the ME. It should be noticed that all the above-mentioned researches
mainly focused on how to model the degradation data affected by the
ME and then estimate the lifetime based on the proposed model. As Si
et al. clarified in [20], these works could be regarded as a forward
problem including degradation modeling and ME identification, life-
time estimation based on the actual degradation model, and uncertainty
analysis of the results owing to the ME. The forward problem aims at
the issue how to eliminate the effect of the ME, and obtain the accurate
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lifetime estimation. On the contrary, the inverse problem aims at the
issue how to specify the ME characteristics for satisfying a given life-
time estimation performance.

In fact, the inverse problem is also interesting and meaningful for
practical engineering. Specially speaking, when we make maintenance
decision based on the performance of the lifetime estimation, accurate
result can provide significant and effective evidence for timely and cost-
effective logistic support activities. So if there are inevitable ME ex-
isting in the observed data, we may wonder how to specify the allow-
able range of the ME for satisfying the acceptable performance of the
lifetime estimation. That is to say, the ME should be limited in a certain
permissible range, which refers to sensor's performance and the design
of the measurement system. Furthermore, due to the unscheduled
maintenance and increased costs caused by the inaccurate lifetime es-
timation, we may wonder what the influence of the ME on the main-
tenance decision is. For example, Scanff et al. analyzed the lifecycle cost
impact of health management for two microelectronic subsystems in
commercial helicopter, and found that the result with the correct life-
time was cost-effective compared with the incorrect lifetime [21]. In
conclusion, the reverse problem is of great importance in maintenance
schedule, and it can be also treated as the specification analysis of the
sensor subject to the prearranged performance of the lifetime estima-
tion. What should be noticed is that if the ME of the sensor can be
identified or calibrated online, the reverse problem is unnecessary since
the effect of the ME can be eliminated for lifetime estimation. In this
case, the accuracy of the lifetime estimation can be ensured so that the
unscheduled maintenance could be avoided. Unfortunately, many sen-
sors cannot be identified or calibrated online after they have been put
into operation such as the thermocouple in the blast furnace. Therefore,
it is much essential to investigate how to realize the specification
analysis of these sensor. Under this consideration, we mainly focus on
the reverse problem with the sensor that cannot be identified online. As
to its inverse problem, only a few researchers have paid an attention to
it. For example, Si et al. [20], and Tang et al. [22], discussed the spe-
cification of the ME based on linear Wiener Process, and further ana-
lyzed the effect of the ME on maintenance policy. In their works, if the
required performance of the lifetime is given, the allowable range of the
ME can be obtained based on their approaches.

However, there are two problems still needing to be further studied.
In the above-mentioned researches and other relative studies, the ME is
usually assumed as a time-independent random variable [15, 16, 23,
24]. In fact, the MEs of many sensors will change over time, e.g., the ME
of the thermocouple will accumulate with aging [25, 26]. That is to say,
the ME should be a time-dependent stochastic process rather than
random variable in this case. On the other hand, in order to compare
the difference between the lifetime estimations with/ without con-
sidering the ME, several measures combining variance and coefficient
of the lifetime are formulated to quantify [20, 22]. It is noted that due

to the property of statistical data driven approach, the lifetime should
be a random variable rather than fixed value, which makes the ap-
plicability and availability of their measures limited. Besides, both of
the above-mentioned papers compare the true lifetime with the first
passage time that the process with ME reaches the given threshold. But
in practice, it is more common to use the degradation model without
considering the ME to fit the data with ME, and further obtain a pseudo
lifetime estimation. So comparing the true lifetime estimation with the
pseudo one is more appropriate and meaningful.

In this paper, we attempt to attain some results based on linear
Wiener-process-based degradation model, which has been widely stu-
died and used for degradation modeling in many deteriorating pro-
ducts. As discussed before, we consider that the true degradation pro-
cess cannot be observed and only the collected degradation data with
the ME are available. In this case, we concentrate on the influence of
the ME on lifetime estimation and the permissible form of the ME under
given allowable lifetime estimation performance. To deal with the
aforementioned issues, we first investigate the influences of the time-
independent/ time-dependent ME on parameters identification and
lifetime estimation based on the Wiener process. It is noteworthy that
the lifetime under the probabilistic framework should be a random
variable rather than a fixed value. Then, we propose a measure to
evaluate the difference between lifetime estimations with/ without
considering the ME based on the relative entropy (i.e., Kullback Leibler
distance), which can provide an effective way to measure the distance
between two distributions [27]. Based on such measure, the required
form of the ME is attained for satisfying a given distance which also
reflects the required performance of lifetime estimation. In addition, we
further analyze the effect of the time-dependent ME on maintenance
decision based on the obtained results.

The remainder parts are organized as follows. In Section 2, the
motivating examples and problem formulation are given. In Section 3,
the influence of ME on lifetime estimation based on the Wiener process
is derived. In Section 4, given the allowable bias of lifetime estimation,
the acceptable forms of time-independent/ time-dependent ME are
obtained. Two illustrative examples are presented to illustrate and de-
monstrate the proposed model in Section 5. This paper is concluded in
Section 6.

2. Motivation and formulation

2.1. Motivating example of blast furnace

Example: Blast furnace is a typical large-scale complex system, and
its wall will degrade inevitably over the time owing to the erosion of
molten iron [28, 29]. If the furnace wall burn out, it will not only lead
to the failure of the blast furnace, but also may cause disastrous acci-
dent. In practice, the thickness of the furnace wall is difficult to measure

Acronyms and abbreviations

Notation

AIC Akaike information criterion
BM Brownian motion
FPT first passage time
MLE maximum likelihood estimation
PDF probability density function
CDF cumulative distribution function
PHM prognostics and health management
RUL remaining useful life
ME measurement error
RUL remaining useful life
KL Kullback Leibler

B(⋅) standard BM
T lifetime
X(t) degradation state at time t
xk observation of at the k-th observing time
X0:k available observations of ≤X t t{ ( ), 0} up to tk
ξ threshold of ≤X t t{ ( ), 0}
fT (t) PDF of the lifetime T
μ the drift coefficient
σB the diffusion coefficient

̂μ , ̂σB the estimates of μ, σB from the observed data without the
ME

′̂μ , ′̂σB the estimates of μ, σB from the observed data with the ME
Tϵ the pseudo lifetime
f t( )Tϵ the PDF of the pseudo lifetime
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