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A B S T R A C T

Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC)
estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe
operation. For online battery prognostics, it is critical to make timely and accurate response to SOH. The loss of
rated capacity of a battery is usually used to determine the battery SOH, whereas the measurement of the
capacity of an operating battery is quite challenging. Normally, the rated capacity fading largely relies on la-
boratory measurements and offline analysis. In this paper, two real-time measurable health indicators (HI) - one
is the time interval of an equal charging voltage difference (TIECVD), and the other is the time interval of an
equal discharging voltage difference (TIEDVD) - are extracted. A novel method which combines feature vector
selection (FVS) with SVR is utilized to model the relationship between these two HIs and capacity, then the
online capacity can be evaluated, more accurate prognostics of SOH and remaining useful life (RUL) can be
made. Besides, compared to standard SVR, the proposed method takes FVS to cut down the training data size,
which improves the efficiency of model training and prediction. In the end, two datasets demonstrated this
approach performs both well in accuracy and efficiency.

1. Introduction

Li-ion battery has characteristics of light weight, high power density
and longer lifetime compared to other cells. The Li-ion battery is re-
garded as an optimal energy storage device for many applications
[1–3]. Battery failure might not only affect the system normal operation
but even result in catastrophic events [4], it is significant to make an
effective and efficient state of health (SOH) evaluation and remaining
useful life (RUL) estimation for online operating batteries. However,
traditional approaches to battery health management mostly focused on
the state of charge (SOC) problems. Attention to addressing the SOH is
limited. Different RUL prediction approaches have been developed in
recent years.

Existing models for battery RUL prediction roughly can be classified
into three parts [5]: (1) electrochemical models, these models trans-
lated the degradation mechanisms related to the material properties
into physical equations. But the internal electro-chemical reactions of a
battery are usually complex, which causes the difficulty of obtaining a
reliable model. (2) Equivalent circuit-based models, a kind of first order
equivalent lumped parameters circuit-based model was reported in ref.
[6]. Different estimation methods have been researched to identify the
model parameters, such as particle filter (PF) [6–9], extended Kalman

filter (EKF) [10]. Such models require large test datasets coming from
battery degradation experiments. (3) Statistical models, the degrada-
tion models can be acquired by exploiting the data of ageing parameters
without needing any prior knowledge on the battery ageing mechan-
isms. Such as the autoregressive moving average (ARMA) is the use of
time series modeling. In addition to the ARMA model, lots of machine
learning based methods have been applied to battery's SOH and RUL
prognostic field. He et al. [11] took curve fitting to find an empirical
battery capacity degradation model. DS theory was applied to initialize
model parameters and PF was also used to optimize parameters itera-
tively. But this model is only fit for offline analysis. Ref [12] used the
NN including four nodes in hidden layer to connect discharge current
and the available capacity. The prediction performance of the model
was good, but the size of the training set was small, an overfitting
problem might occur.

Recently, some novel approaches were proposed, Lu et al. [13]
presented a geometric approach extracting geometrical features that are
sensitive to slight changes in the degradation process of a Li-ion battery.
The geodesic on the manifold was used to estimate battery's capacity.
This approach showed highly accurate prediction results. However, the
curves of current charging and curves of voltage discharging
throughout the entire battery life are needed for feature extraction,
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which is not feasible for online battery health estimation. Ref [14]
proposed a new validation method for PSO-SVR model, which em-
ployed the particle swarm optimization (PSO) to obtain the SVR kernel
parameters. Compared with eight published methods, [14] obtained
more accurate prediction results. But it is merely applicable for offline
capacity analysis.

Though the rated capacity is the most commonly used health in-
dicator of a Li-ion battery, the measurement of maximum deliverable
capacity for operating batteries is difficult. Because the cell is not likely
to be fully charged or discharged during operation. In this paper, two
online measurable parameters are analyzed, one is the time interval of
an equal charging voltage difference (TIECVD), and the other is the
time interval of an equal discharging voltage difference (TIEDVD).
These two variables also fade with the battery ageing, so these mon-
itoring variables might have connections with the capacity to some
extent. If the relationship among them can be determined, the capacity
of an online operating battery can be deduced. Then more accurate SOH
prediction and RUL prognostic can be made compared to offline ca-
pacity analysis. SVR is a commonly used data-driven method, which
performs well in prognostic [15], but the number of support vectors
required grows linearly with the size of training dataset, in other words,
the larger the data size is, the longer time for model training and ca-
pacity prediction is. Based on SVR, in order to quantify the relationship
between the two online measurable variables and capacity, at the same
time, improve the efficiency of model building and prediction, a novel
data-driven prognostic approach named FVS-SVR is proposed.

The rest of this paper is organized as follows: Basic algorithms of
SVR, FVS are introduced in Section 2. Section 3 is experimental data
analysis. The proposed battery SOH and RUL prognostic method is
discussed in Section 4. Two battery degradation datasets are in-
vestigated in Section 5 to validate the proposed approach. Conclusions
are drawn in Section 6.

2. Related work

2.1. Support vector regression with ε-intensive loss function

This section explains the fundamental idea of support vector ma-
chines applied for solving regression problems. Support vector regres-
sion is a sort of data-driven method based on structural risk mini-
mization (SRM). SVR is initially used to solve linear regression
problems. After introducing the kernel trick, SVR also can deal with
regression problems.

ε-SVR is a commonly used SVR model, given a training
setD={(xi,yi)| i=1,2,…N}, xi∈ Rm, yi∈ R, for linear regression pro-
blems, the objection of ε-SVR is to find the best estimation function f
(x)=wTx+ b, by solving the following quadratic optimization pro-
blem:
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where C (C > 0) is the penalty parameter, C determines the tradeoff
between the flatness of function f(x) and the upper bound of derivations
larger than ε [16].Variable n represents the training set size. ξi and ξi

∗

are slack variables, when training error of the ith point is bigger than
ε(ε > 0), penalty error ξi is added to the ith point, otherwise, if the
error is smaller than (−ε), ξi∗ is added.

The formation of the ε-intensive function is defined as:
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Primal objective function and corresponding constraints can be
transformed into a Lagrange function Lp:
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Constraints are given as:
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The solution to the problem f(x) can be expressed as:
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Only some points meet the condition(αi− αi∗)≠ 0, these data are
support vectors (SVs). For nonlinear regression problems, we can em-
ploy kernel functions to convert nonlinear problems into linear ones.
SVR model for nonlinear regression is as following:

∑= − +
=

∗ x xf x α α b( ) ( ) ,
i

n

i i i
1 (6)

where = − −( )x xK ( , ) exp x x
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2 is the radial basis kernel function

(RBF), σ is the width of the kernel function.
The SVR model includes C, σ, ε three hyper-parameters. Generally,

grid search, pattern search and metaheuristic search are applied to
obtain these hyper-parameters [17]. Although the computation cost of
grid search is high, this method can guarantee finding a global optimum
[18]. A grid search method proposed in [19] is used to determine values
of these hyper-parameters.

2.2. Principle of feature vector selection

Define Γ as the input space, H represents the feature space named
Hilbert space. Last section, the kernel trick was mentioned to map the
input vector x in Γ to H through the functionϕ. For i, j=1, 2, …, N,
kernel functionK(xi,xj)= 〈ϕ(xi),ϕ(xj)〉, here kij kij denotes K(xi,xj) for
simplification. Symbol N is the number of samples, the transformed
data lie in a subspace Hs. In fact, the dimension of this subspace Hs is
significantly lower than N and equals to the numerical rank of the
kernel matrixK={kij|1≤ i≤N,1≤ j≤N}. The FVS is proposed to
select FVs, forming a set of basis vectors Hs in a feature space [20].

The original data are {x1,x2,…,xN}, corresponding points in the
feature space are {ϕ(x1),ϕ(x2),…,ϕ(xN)}, noting ϕ(x1)= ϕ1, ϕ
(x2)= ϕ2, …, ϕ(xN)= ϕN, the set of the selected vectors is marked as
S=(xs1,xs2,…,xsl), these vectors are represented byΦS=(ϕs1,ϕs2,…ϕsl)
in a feature space, l is the number of FVs. As any data can be projected
on these bases in the feature space, thus the estimation value of any
mapping vectorϕi can be approximated as the linear combination of the
elements in ΦS, the formulation is as following:
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1 2 , whereei is the coefficient vector.
Given a pointxi, the goal is to find the coefficient vector ei that can
make the estimated mapping ϕi

 is as close as possible to ϕi. Define the
estimation error ratio γi as:
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