
Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

Reliable real-time task scheduler based on Rocket Queue architecture

L. Kohútka, V. Stopjaková⁎

Institute of Electronics and Photonics, Slovak University of Technology in Bratislava, Slovakia

A R T I C L E I N F O

Keywords:
Real-time
Scheduling
Rocket Queue
FPGA
TMR
Safety-critical

A B S T R A C T

This paper presents the design of an improved task scheduler for real-time and safety-critical systems, where it is
important to deal with real-time requirements and reliability requirements simultaneously. The proposed
scheduler implements EDF algorithm for the optimal scheduling of hard real-time tasks, which is essential for
real-time operating systems. The proposed task scheduler allows removing any task from the queue according to
task ID and regardless of the actual position of the task within the queue, which is important for flexibility of the
scheduler for its future extensions. Both operations of the scheduler, i.e. task adding and task killing take always
constant time (two clock cycles) to execute regardless of the actual or the maximum number of tasks within the
scheduler. The scheduler was verified using simplified version of UVM and applying millions of instructions with
randomly generated sort values. The scheduler, implemented in a form of a coprocessor, was synthesized into
Intel FPGA Cyclone V with 100 MHz clock frequency. There are two improvements proposed that can sig-
nificantly reduce resource costs of the scheduler, which is achieved by replacing static deadlines with dynamic
deadlines and using a new Rocket Queue architecture for sorting of the tasks according to their deadline values.
When both improvements are applied simultaneously, the total ALM cost savings are in the range from 42,59%
to 60,18% and the total amount of registers is reduced by 73,74% to 74,87%, depending on the scheduler
capacity. The spared resources are then used for implementation of two different variations of TMR in order to
increase fault tolerance of the scheduler. The resource cost reductions achieved also indirectly increase the
reliability of such scheduler because of reduced probability that a fault occurs.

1. Introduction

Real-time systems represent a category of embedded systems that
are processing real-time tasks. Success of real-time tasks depends not
only on the computation result itself but also on time when these tasks
are completed. Too late completion of hard real-time tasks may re-
present the same failure as if the result of the task was incorrect. Thus,
reliability of real-time systems means that the tasks are completed in
correct time [1,2].

Task scheduling algorithms are usually containing data sorting in a
form of min/max queues, which are typically implemented in software.
Software implementations are often sufficient for small and simple real-
time systems with small amount of tasks. Nevertheless, increasing
complexity of systems and the number of real-time tasks requires higher
average performance and less varying latency caused by data sorting
(e.g. constant response time). Constant response time is especially im-
portant for real-time systems that are also safety-critical systems. Hard
real-time systems are usually also safety-critical systems, and vice versa,
safety-critical systems usually include hard real-time systems. Due to
this, the requirements for meeting deadlines of tasks can be also seen as

reliability requirements because missing a deadline is also considered as
a failure of the systems. Even if a micro-controller with the highest
possible performance was used, there would still be no guarantee that
all tasks will meet their deadlines. Therefore, a dedicated task scheduler
that provides scheduling of real-time tasks should be used in real-time/
safety-critical systems [3–7].

The constant latency of all operations within the system, including
data sorting, is very important for more reliable scheduling in hard real-
time systems. In such cases, software implementations do not fulfill all
the requirements because software algorithms for data sorting do not
operate in constant time. Alternative solutions are based on hardware
acceleration, thus the data sorting and min/max queues can be im-
plemented in a digital integrated circuit (e.g. ASIC or FPGA) [8–28].
Several hardware architectures designed for data sorting or im-
plementation of min/max queues have been developed so far. However,
they all suffer from consuming too much logic (LUT) resources, thus
they have relatively high chip area costs in ASIC (FPGA) technologies
[10–28].

The research presented in this paper is focused on using an im-
proved hardware-based data sorting in min/max queues, which

https://doi.org/10.1016/j.microrel.2017.12.007
Received 4 August 2017; Received in revised form 17 November 2017; Accepted 3 December 2017

⁎ Corresponding author.
E-mail addresses: lukas.kohutka@stuba.sk (L. Kohútka), viera.stopjakova@stuba.sk (V. Stopjaková).

Microelectronics Reliability 84 (2018) 7–19

0026-2714/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2017.12.007
https://doi.org/10.1016/j.microrel.2017.12.007
mailto:lukas.kohutka@stuba.sk
mailto:viera.stopjakova@stuba.sk
https://doi.org/10.1016/j.microrel.2017.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2017.12.007&domain=pdf


requires reduced amount of logic resources needed for its im-
plementation. This was achieved by new architecture called Rocket
Queue, which was previously developed in order to increase the scal-
ability of data sorting implemented in hardware so that more items can
be efficiently sorted [29,30]. This architecture was adopted for usage in
task scheduling for real-time systems, where, the overall resource costs
of the scheduling were significantly reduced too. The further tests
showed that when the Rocket Queue architecture is stressed with fre-
quent occurrence of usages (while the architecture is almost full of
data) such situation might occasionally cause loss of few data items. In
order to eliminate this reliability issue, a small extension of the Rocket
Queue architecture is proposed. With this extension, the Rocket Queue
behaves correctly and reliably in all states. In order to increase the
reliability of Rocket Queue even more, two different versions of triple
modular redundancy (TMR) were applied and their synthesis results
have been compared.

The structure of the paper is as follows. Section 2 contains related
work on sorting architectures that can be used for implementation of
real-time task schedulers. In Section 3, a new sorting architecture,
called Rocket Queue, is proposed. Reliability improvements of the
Rocket Queue architecture are proposed in Section 4. Section 5 contains
information how to use the Rocket Queue architecture for im-
plementation of EDF-based task scheduler for real-time systems. Ver-
ification of the described solutions is described in Section 6. Section 7
contains synthesis results in a form of tables and graphs. These results
are then discussed in Section 8. The last section concludes the research
presented in this paper.

2. Related work on sorting architectures

Deadline-based task scheduler for real-time systems performs task
sorting according to their deadlines very intensively for implementation
of ready queues. Therefore, sorting architectures represent the core
functionality of task schedulers implemented in hardware. Several ar-
chitectures for data sorting in min/max queues have been developed,
and can be used in task scheduling of real-time systems. Nevertheless,
they suffer from scalability issues due to increasing critical path length
and resource cost with regards to increasing capacity of schedulers (i.e.
the maximum number of tasks supported). The most popular archi-
tectures include FIFO with MUX Tree [10,11,14,20], Shift Registers
[17,19,22,23], DP RAM Heapsort [18] and Systolic Array [24–29].

The FIFO approach is the least scalable in terms of critical path
length due to the complexity of the MUX Tree part, which contains too
long critical path (if higher capacity is selected). It is also very in-
efficient from chip area point of view [10,11,14,20].

The Shift Registers architecture is more efficient approach than the
previous one but the critical path length is still not constant when the
scheduler capacity increases. This architecture consists of homogenous
cells, where each cell can store one task. These cells communicate to the
nearest neighbors. All cells receive an instruction simultaneously from
common bus. The more cells are in the queue, the longer the critical
path is [17,19,22,23].

DP RAM Heapsort is relatively efficient architecture. However, re-
moving the items in this architecture is possible from the beginning of
the queue only. Removing the items according to their ID is not possible
at all [18].

In Systolic Array architecture, the critical path problem is solved by
pipelining. The first cell is the only cell that receives instructions from
the input of the queue. Whenever an instruction is provided to the first
cell, it gradually propagates from the first cell to the next one, with a
speed of one cell per clock cycle, until the instruction moves to the last
cell. The only disadvantage of this architecture is that it consumes re-
latively high amount of logic resources, especially registers [24–29].

From among the architectures mentioned above, only Systolic Array
architecture fulfils the requirements of constant and low response time
(2 clock cycles with constant critical path length). Furthermore,
Systolic Array is able to remove an item from any position according to
its ID, which is necessary for flexibility and extensibility of task sche-
dulers. For example, inter-task synchronization may need to tempora-
rily remove some tasks from the queue of ready tasks or reschedule a
task (i.e. remove the task and schedule it again with other deadline/
priority).

3. The proposed Rocket Queue architecture

Although the Systolic Array architecture meets the requirements,
the chip area costs of this architecture are too high. Systolic Array ar-
chitecture has poor scalability with regards to the number of cells (i.e.
capacity). Although the functional and timing characteristics of Systolic
Array and Rocket Queue are exactly the same (i.e. item insertion with
sorting and item removal according to item ID, both performed in
2 clock cycles regardless of queue capacity), the Systolic Array archi-
tecture is consuming too many resources for higher capacity of the
queue [30,31].

One of the most resource consuming parts of the queues is a com-
parator. Comparison is performed in each cell of the Systolic Array
architecture as well as in Shift Registers. By reducing the amount of
comparators used within the queue, significant portion of resources can
be saved. Therefore, a new architecture called Rocket Queue was de-
veloped [30,31].

The Rocket Queue architecture is using less than one comparator
per cell in average. This is accomplished by sharing one comparator
within several cells. The sharing of comparators is achieved by using
multiplexers. The architecture is organized in levels, where each level
consists of several cells that share the same comparator. The first few
levels are called duplicating levels because each level below the du-
plicating level contains two times more cells. The duplication of cells
per level stops at some point, which is defined by the number of du-
plicating levels. The levels below the group of duplicating levels are
called merged levels and they keep the same amount of cells per level
for the rest of the architecture [30,31]. Fig. 1 depicts an example of the
Rocket Queue architecture, where 3 duplicating levels and 11 merged
levels are used. Each node represents memory storage for one item,
while the connections between the nodes represent possible movements
of items between the nodes that can occur due to adding or removing of
an item.

There are two disadvantages caused by merging comparators to one
common comparator within each level. The first one is that the multi-
plexers mentioned above must be inserted so that the comparator can
be shared by more cells. This increases resource costs and critical path
length, therefore the number of duplicating levels is limited. The second
drawback is that the Rocket Queue architecture also needs to add a
counter to each cell for decisions, in which direction to propagate the
instructions that are adding new items to the queue (i.e. insert in-
structions). All instructions start at the first level that is located on the
top of the queue and are propagated down at a speed of one level per
clock cycle. Only one cell is actively used by the insert instruction in
each line, which is controlled by the counters. The remove instructions
are checking ID values of all cells within the current level [30,31].

The level-based organization of the Rocket Queue architecture in-
cluding the interfaces between these levels is depicted in Fig. 2, where
an example of one duplicating level and two merged levels is used. One
can notice that the interface of all levels (regardless of whether they are
duplicating or merged) is always the same, except for the first level
from the top, which always has a capacity of one item only. Thus, level
1 does not use the ADDR input. The ADDR input is used for selection of

L. Kohútka, V. Stopjaková Microelectronics Reliability 84 (2018) 7–19

8



Download English Version:

https://daneshyari.com/en/article/6945606

Download Persian Version:

https://daneshyari.com/article/6945606

Daneshyari.com

https://daneshyari.com/en/article/6945606
https://daneshyari.com/article/6945606
https://daneshyari.com

