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A B S T R A C T

Auxiliary Power Unit (APU) is an essential component utilized in modern civil aircraft. In order to meet APU
availability requirements, failure prediction should be performed in an effective way. To this end, APU per-
formance deterioration can be modeled by a Generalized Renewal Process (GRP). In this paper, aircraft APU
failure prediction is implemented using a Weibull-based GRP (WGRP). However, the effect of maintenance
activities on aircraft APU required in WGRP is difficult to be quantified. To solve this problem, a new model
named Quantified Generalized Renewal Process (QGRP) is developed in this paper. In this model, APU per-
formance-related test parameters after repairs are utilized to quantify the maintenance effect. Based on the
proposed QGRP model, the conditional failure rate and hazard rate of each aircraft APU at a future point in time
can be calculated based on the APU's virtual age and be combined to predict the number of failures of a fleet of
APUs. The performance of the proposed QGRP model is validated using a three-year data set provided by China
Southern Airlines. The results show that the QGRP model is effective in aircraft APU failure prediction.

1. Introduction

An Auxiliary Power Unit (APU) is a small gas turbine engine used
for producing pneumatic and electrical power rather than for propul-
sion purposes [1]. Many engineering systems use APUs, such as aircraft,
ships, and large ground vehicles. APU is indeed an essential part of
today's civil aircraft, which enables an aircraft free from ground power
supplies. Another important APU function is to provide the power for
main engine starts [2]. Furthermore, for some aircrafts, APU can also
provide compressed air and backup electric power to compensate for
the effect of dead engines. As a result, high reliability of APU is critical
for aircraft operation and safety.

Maintenance is one of the most important means keeping APU re-
liable and ensuring aircraft safety. When performed effectively, it re-
stores system performance, reduces the failure frequency and prolongs
the system's remaining life [3]. In commercial aviation, maintenance
strategies mainly include three categories: corrective maintenance,
preventive maintenance and condition-based maintenance (CBM) [4].

Corrective maintenance is a basic maintenance strategy. Under cor-
rective maintenance, target equipment is repaired only when a failure
occurs. It is uneconomic and unsuitable for aircraft because such fail-
ures may lead to some catastrophic consequences. Under preventive
maintenance, maintenance operations are often carried out periodi-
cally. However, to ensure the reliability of target equipment, main-
tenance intervals are usually made shorter than required. In other
words, the actual health status of the target equipment is ignored and
many maintenance actions are indeed unnecessary. In addition, un-
expected failures between two maintenance actions may also lead to
catastrophic consequences. Unlike the two time-based maintenance
strategies, CBM is relatively new. Under CBM, the time when the target
equipment should be repaired can be determined using condition
monitoring data and failure prognostic models. If CBM is properly
realized, unnecessary maintenance operations can be avoided, and
maintenance cost can be significantly reduced. Meanwhile, catastrophic
consequences can be reduced. Apparently, CBM is a suitable main-
tenance strategy for aircraft APU as it will remain the aircraft APU
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performance at a high level. One of the challenges for APU CBM is to
predict health status of an APU in the future or its time-to-failure (TTF).

Effective failure prediction can provide an alarm before a failure
occurs, so that significant system deterioration, malfunction, or even
catastrophic failures can be prevented [5]. In [6], the goal is to improve
the accuracy of APU TTF prediction. Several machine learning algo-
rithms, including knowledge discovery in databases (KDD) and support
vector machine (SVM), are used. Other machine learning-based
methods are also utilized to predict TTF or remaining useful life (RUL)
[2,7–11]. In [12], APU fault isolation is performed based on FMEA and
data mining algorithms. In [13,14], statistical and data analytics
methods are utilized for failure prognostics and health monitoring of
APU. Moreover, prediction of health status or system reliability also
attracts much attention nowadays. Predicting health status and pro-
viding feedback are quite important for highly reliable products
[15–17]. Wu et al. [18] use Weibull analysis to determine the failure
rates of automotive components. In [19], failure prediction of printed
circuit board is performed using part stress method.

Actually, equipment health status is dynamic over time. For a re-
pairable system such as APU, its health status trend can be represented
by a deterioration process. There are many available methods for
modeling deterioration processes [20]. The use of hazard function is
one of them [21]. Hazard function has many forms such as power law,
s-shaped, log-linear function. Generally, for a degrading system, its
hazard function (hazard rate) is increasing over time. However, as a
typical repairable system, APU deterioration process is affected by
maintenance. Therefore, maintenance effect should also be considered
in APU failure prediction. Generalized Renewal Process (GRP) con-
sidering “virtual age” is a well-known method for modeling deteriora-
tion process with maintenance [22–24]. In addition to the parameters
of a given probability distribution, a rejuvenation parameter q re-
presenting maintenance effect is introduced in GRP. This idea was
firstly proposed in [25]. When q=0 and q=1, GRP model becomes
Renewal Process (RP) model and Non-Homogeneous Poisson Process
(NHPP) model, respectively [26–28]. When the given probability dis-
tribution is Weibull distribution, GRP is called Weibull-based GRP
[29–31]. However, it is difficult to determine the value of virtual age in
GPR. In order to address this problem, this paper proposes a Quantified
Generalized Renewal Process (QGRP) model and uses this model for
APU failure prediction. Under the QGRP model, a new virtual age
function is proposed based on monitoring data in order to quantify the
effect of each maintenance action. A series of experiments are presented
to illustrate the superiority of the proposed QGRP model. This work
contributes to the construction of APU CBM framework and can be used
to support civil aviation maintenance programs. Furthermore, such
QGRP models can also be applied to model other repairable systems.

The remainder of this paper is organized as follows. Section 2 in-
troduces the basic methodology of WGRP model. Section 3 introduces
the proposed QGRP model and a failure prediction framework based on
QGRP model. Section 4 shows experiment data sets and failure

prediction results. Section 5 concludes this paper and discusses future
work.

2. Weibull-based generalized renewal process

2.1. Definition of generalized renewal process

GRP is a stochastic model that can be utilized to describe the de-
terioration process of a system subject to maintenance by introducing
the concept of virtual age [32]. In GRP, the real time of the system is
substituted by virtual age [33]. There are two types of GRP model:
Kijima Model I and Kijima Model II [34]. The definition of GRP is de-
scribed as follows.

Let Ti be the actual cumulative time until the ith repair and Xi be the
time interval between the (i− 1)th and the ith repairs as shown in Fig. 1.

It can be seen that = ∑
=

T Xi
j

i

j
1

is the age of the system before the ith repair

occurs. Generally, T0 and X0 are assumed to be zero. Under the GRP
model, Ti and Xi can be considered as random variables, and the
random vectors T=(T1,T2,⋯,Tn) and X=(X1,X2,⋯,Xn) can be con-
sidered as stochastic time series.

Let F(t) and f(t) be the cumulative distribution function (CDF) and
probability density function (PDF) of TTF for a new system, respec-
tively. Virtual age represented by Vi reflects the cumulative main-
tenance effect. Under Kijima Model I, maintenance effect on each repair
is only related to the last time between repairs. There is an assumption
that the damage between the (i− 1)th and the ith repair can be partially
removed by the ith repair. Let q be the effect of the ith repair. Then, after
the ith repair, Vi can be calculated as:
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Under Kijima Model II, the effect of each repair is related to the
whole history of repairs. Suppose that all historical cumulative damage
of the system can be partially removed by the ith repair. Virtue age Vi

after the ith repair can be calculated as follows:

= +−V q V X( )i ii 1 (3)

and equivalently,
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Then, the CDF of Xi can be expressed as:
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GRP involves a concept that virtual age is related to statistical
characteristics of repairs. The quality of repairs is reflected by para-
meter q. The drawback is that the value of q is constant and the dif-
ferences between various repairs are ignored.

2.2. The methodology of WGRP

WGRP model is first presented in [31]. In WGRP model, Xi re-
presents the time between the (i− 1)th and the ith repairs, which is
assumed to follow a Weibull distribution under the condition of virtual
age Vi. Let α and β be the shape and scale parameters of Weibull
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Fig. 1. Schematic diagram of the relationship between X and T.
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