Microelectronics Reliability 80 (2018) 176-183

journal homepage: www.elsevier.com/locate/microrel

Contents lists available at ScienceDirect

Microelectronics Reliability

Handling of transient and permanent faults in dynamically scheduled super- = R

scalar Processors

Felix Miithlbauer®’, Lukas Schréder?, Mario Scholzel™”

2 University of Potsdam, Germany
® IHP, Frankfurt(Oder), Germany

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Fault tolerance

Fail-safe

Dynamically scheduled processor

This article describes architectural extensions for a dynamically scheduled processor to enable three different
operation modes, ranging from high-performance, to high-reliability. With minor extensions of the control path,
the resources of the super-scalar data-path can be used either for high-performance execution, fail-safe-opera-
tion, or fault-tolerant-operation. Furthermore, the online error-correction capabilities are combined with re-

configuration techniques for permanent fault handling. This reconfiguration can take defective components out
of operation permanently, and can be triggered on-demand during runtime, depending on the frequency of
online corrected faults. A comprehensive fault simulation was carried out in order to evaluate hardware over-
head, fault coverage and performance penalties of the proposed approach. Moreover, the impact of the per-
manent reconfiguration regarding the reliability and performance is investigated.

1. Introduction

Within the past decade dynamically scheduled processor archi-
tectures have taken root in the domain of embedded systems. For ex-
ample, ARM-based processors are heavily used. High performance of
these processors is typically achieved by instruction level parallelism
via multiple functional units and supporting out-of-order and spec-
ulative execution. Moreover, the performance greatly benefited from
the shrinking feature size in the CMOS technology that enabled the
integration of more functional units. But manufacturing in nanoscale
dimensions increases the probability for temporary faults affecting the
device at runtime and aging effects causing permanent faults in such
processors [1].

On the other hand, new application domains, like electronic control
units for automated or assisted driving, increase the demand for high-
performance processors, while at the same time very high reliability in
some use cases is required. The demand for reliability could have dif-
ferent flavors: In some cases, a fail-safe mode is sufficient, if, in case of a
detected error (transient or permanent one), the system can switch into
a fail-safe state, where it cannot cause any harm and it is acceptable
that the system stops to perform the desired function. In other cases, a
fault-tolerant mode is required, if the safety-critical function must be
provided reliable despite of occurred temporary or permanent faults.

The architecture of dynamically scheduled processors already offers
mechanisms that can be used for fail-safe or fault-tolerant operation.

” Corresponding author.

For example, hardware-redundancy is inherently available as it is ty-
pically employed in fault-tolerant system design. But, also roll-back
techniques are available which are typically used to recover from the
speculative execution of miss-predicted branches.

Several approaches for integrating fault tolerance were presented
during the recent years for dynamically scheduled processors. These
techniques are either based on online error detection and correction, or
on reconfiguration. Reconfiguration allows only for handling perma-
nent faults, while online error handling could handle temporary and
possibly permanent faults during runtime. Online fault handling of
permanent faults is usually accomplished by fault masking and/or re-
computation, both causing a performance loss, because operations are
executed multiple times simultaneously, or a time consuming roll-back
is required for error correction. For permanent faults, this performance
loss may be reduced by reconfiguration means, where a defective
component is excluded from being used during the execution. By this, at
least a repeated error detection and recovery of permanent faults can be
avoided at runtime. Although for both techniques several approaches
were presented in the past, there is to the best knowledge of the authors
no approach, where online error correction and reconfiguration are
combined into a single dynamically scheduled processor architecture.

The contribution of this article is the extension of a dynamically
scheduled processor to detect temporary and permanent faults at run-
time and to recover from them, and the integration of a reconfiguration
technique for handling permanent faults. This yields a processor

E-mail addresses: muehlbauer@cs.uni-potsdam.de (F. Miihlbauer), luschroe@uni-potsdam.de (L. Schroder), schoelzel@ihp-microelectronics.com (M. Scholzel).

https://doi.org/10.1016/j.microrel.2017.11.021

Received 4 August 2017; Received in revised form 6 November 2017; Accepted 24 November 2017

0026-2714/ © 2017 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2017.11.021
https://doi.org/10.1016/j.microrel.2017.11.021
mailto:muehlbauer@cs.uni-potsdam.de
mailto:luschroe@uni-potsdam.de
mailto:schoelzel@ihp-microelectronics.com
https://doi.org/10.1016/j.microrel.2017.11.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2017.11.021&domain=pdf

F. Miihlbauer et al.

architecture with the following features:

e The processor can switch dynamically between three different ex-
ecution modes: fail-operational (errors are detected and corrected
online), fail-safe (only online error detection), and high-perfor-
mance (neither error detection nor recovery).

e Frequently detected errors can trigger the reconfiguration me-
chanism that can exclude defective components of the processor
from being used during the execution.

e Information of dynamically detected errors is propagated to a di-
agnostic test routine, which is used during reconfiguration.

Because online error detection does not deliver detailed diagnostic
information about the site of the fault, the reconfiguration mechanism
is coupled with a diagnostic software-based self-test, such that the fault
site can be localized with the same granularity as the reconfiguration
mechanism works.

The reminder of this article is organized as follows. Section 2 re-
views existing work regarding fault handling and reconfiguration me-
chanisms for dynamically scheduled processors. Section 3 describes the
baseline architecture of our dynamically scheduled processor. In
Sections 4—6 our offline and online fault handling extensions are in-
troduced. Finally, Section 7 provides results regarding hardware over-
head as well as performance penalties and fault coverage.

2. Related work

For tolerating faults always some kind of redundancy is necessary
[2]. In dynamically scheduled architectures hardware redundancy is
inherently available to achieve high-performance. A lot of research was
done on managing this redundancy for fault tolerance purposes and can
be grouped into two categories. First, graceful degradation: A faulty
component is permanently disabled and operations are distributed to
other available components. This resource reduction is accompanied by
performance degradation. Such approaches are suitable for permanent
faults. Second, concurrent execution: Operations are executed multiple
times and errors could be detected or even masked. Not only transient
faults could be handled online but also permanent faults in some cases.
However, defective components remain active and permanent faults
will repeatedly trigger the correction mechanism.

A very simple approach concerning graceful degradation in dyna-
mically scheduled processors is to mark defective functional units as
occupied [3,4]. In [5] this method was extended to array-like structures
which are present in many control tables of dynamically scheduled
processors, like reservation stations or the reorder buffer. On this more
fine-grained level, single table entries could be disabled by declaring
them as occupied. However, the fault diagnosis, i. e. the online locali-
zation of faults, is only discussed briefly. In [6] a diagnostic software-
based self-test (SBST) that can detect defective components offline was
proposed for that purpose.

In order to handle transient and permanent faults, which occur at
runtime, the error checking must be done online, e.g. duplicating op-
erations, distributing them to different functional units and compare
the results afterwards. This can be done at different levels between
hardware and software. For example, in [7] the simultaneous multi-
threading capabilities of superscalar processors are exploited for ex-
ecuting a thread twice. However, the error detection latency of software
is usually high and recovery is difficult. This can be a problem espe-
cially for systems with real-time constraints.

For dynamically scheduled processors, concurrent error checking
can also be done at instruction level. A first discussion of suitable
techniques was done by Franklin [3]. In [4] he proposed the duplication
of operations by the scheduler. Stall cycles during the execution of the
program are used to re-execute already executed operations, which
reduces the performance penalty. In [8] the duplication is used for error
detection. For the duplicated operations two consecutive reorder buffer

177

Microelectronics Reliability 80 (2018) 176-183

entries are reserved. This makes the comparison of the results easy, but
increases the size of the reorder buffer. Nevertheless, these works do not
propose any recovery scheme.

In [9], recovery is postponed to software level. In [10] and [11],
beside error detection, also recovery from transient faults is provided by
hardware. If a fault was detected the processor is rolled-back, like after
a mis-predicted branch operation, and execution is continued by
fetching the failed operation again. However, duplicates are not dis-
tributed to different functional units. Thus, permanent faults may not
be detected at all and additionally the recovery could end up in an
endless loop, detecting always one and the same permanent error.

Additionally, in all of these papers the fault detection capabilities
are only investigated analytically and no evaluation was done. In our
experiments it turned out that there are several signals even in pro-
tected components, which are critical and should be protected by other
techniques.

3. Processor architecture

This section introduces the architecture of our dynamically sched-
uled processor, which was used for demonstrating the proposed fault
handling approach. The architecture is based on the Tomasulo-
Architecture with a reorder-buffer [12] and supports out-of-order and
speculative execution (see Fig. 1). Our fault tolerance extensions (in
color) are described in the next sections.

The processor is composed of a 5-stage pipeline. In the fetch-stage,
operations are fetched from the program memory into the IQ (in-
struction queue) component. The instructions are loaded from the ad-
dress determined by the PC-register and are stored in a ring buffer. This
process is stalled if the buffer is full.

In the issue-stage the next instruction from the IQ is issued to a re-
servation station (RS). Each functional unit (FU) has a dedicated RS,
which buffers several instructions until their source operands become
available. These operands can be either taken from the register file
(REG), or they are bypassed from the reorder buffer (ROB), when they
become available there. The scheduler distributes one instruction per
cycle from the IQ to a RS in a Round-Robin manner. Therefore a free RS
entry and additionally a free reorder buffer entry must be available. The
ROB entry is reserved to store the result of that instruction.

In the execute-stage, instructions are processed by the functional
units (FU). All RS-FU-units operate independently, thus instructions get
out of order here. If all operands of an instruction are available and the
FU is free, then this instruction can be executed. The instruction is then
forwarded from the RS and the corresponding RS entry is freed.
Multiple cycles may be used for executing an instruction.

When the execution of an instruction is finished, then the result is
stored into the reserved entry of the ROB during the write-back-stage. As
mentioned above, results can be forwarded to waiting instructions in
the reservation stations. Results from all FUs can be written to the re-
order buffer simultaneously.

Finally, in the commit-stage, the reorder buffer commits instructions
in the original program order. The buffer is organized as a ring buffer.
In the issue-stage the entries have been reserved in the order of the
original order of the instructions, thus the next entry which should be
committed is always known. When this entry receives a result this in-
struction could be completed. Committing a data operation means to
write the computed result into the register file. If necessary also a
memory access (read or write) is performed. Committing a branch op-
eration means to write the result into the PC. We have implemented a
static branch prediction that is always branch is not taken. Thus, if a
branch is taken all administration tables (instruction queue, reservation
stations and reorder buffer) are cleared. Otherwise the speculative
processing of the instructions stored in these tables was correct, and
they can be processed further.



Download English Version:

https://daneshyari.com/en/article/6945980

Download Persian Version:

https://daneshyari.com/article/6945980

Daneshyari.com


https://daneshyari.com/en/article/6945980
https://daneshyari.com/article/6945980
https://daneshyari.com

