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A B S T R A C T

Nowadays, Computing-in-Memory (CiM) represents one of the most relevant solutions to deal with CMOS
technological issues and several works have been proposed so far targeting front and back-end synthesis.
However, a given CiM architecture can be synthesized depending on different parameters, leading to different
implementations w.r.t. area, power consumption and performance. It is thus mandatory to have an evaluation
framework to characterize the actual implementation depending on the above terms. This is even more im-
portant during the Design Exploration phase, in which many different implementations are explored to identify
the best candidate w.r.t. the user requirements. In this work, we focus on the dynamic power consumption
estimation of a given CiM implementation. Instead of resorting to a simulation-based power estimation, we
propose an analytical approach that will dramatically speed up the estimation since no simulations are required.
By comparing the proposed approach against the simulation-based method over a massive experimental cam-
paign, we show that the accuracy of the estimation turns out to be very high.

1. Introduction

Energy-efficient computation is one of the most challenging pro-
blem faced today by the research community. Two main walls have to
be broken in order to go beyond state-of-the-art solutions: architectural
and technology walls. The most advanced computing architectures are
still based on the Von Neumann or Harvard paradigm, in which data
has to be moved from the storage element (typically a Random Access
Memory, RAM) to the computational element (namely the CPU) and
then moved back. This is nowadays becoming no more affordable due
to the fact that most of the time and energy required to complete any
task is spent for data transfer only. The second wall is the CMOS
technology that is reaching its physical limits and violating the famous
Moore’s law. New technology nodes will not double the performances
as was in the past. Moreover, the leakage current increasing leads to
higher static power consumption and lower reliability [1–4].

One of the emerging solutions to enable energy-efficient computa-
tion is the so-called Computation-in-Memory (CiM) paradigm: by
merging together computation and storage, it is possible to avoid data
transfers from and back to memory. This is possible thanks to the
memristor [5], a non-volatile device able to act as both storage and
information processing unit. Moreover, the memristor presents many
advantages: CMOS process compatibility, lower cost, zero standby

power, nanosecond switching speed, great scalability, high density and
non-volatile capability [6,7].

Thanks to its nature (i.e., computational as well as storage element),
the memristor is exploited in different kinds of applications, such as
neuromorphic systems [8], non-volatile memories [9] and computing
architectures for data-intensive applications. This paper focuses on the
latter ones, and more in particular on the CiM architecture proposed in
[10]. For this architecture, some works have been proposed so far
targeting both front and back-end synthesis [11,12]. However, a given
CiM architecture can be synthesized depending on many parameters
[11] leading to different implementations w.r.t. area, power con-
sumption and performances. In order to analyze and compare different
solutions varying on these parameters, an evaluation framework needs
to be properly defined. This is even more important during the Design
Exploration phase during which many different implementations are
explored to identify the best candidate(s) w.r.t. the user requirements.
In this work, we focus on the dynamic power consumption estimation of
a given CiM implementation, proposing a front-end evaluation frame-
work. Instead of resorting to a simulation-based power estimation, we
propose an analytical approach that will dramatically speed up the
estimation time since no simulations are required. Comparing the
proposed approach against the simulation-based method, experimental
results show that the dynamic power consumption estimation turns out
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significantly accurate. The proposed methodology can be helpful to
designers in the early stages of the circuit design (i.e., front-end) for
obtaining a preliminary estimation of the dynamic power consumption.
In successive phases, back-end analyses can further refine estimations
by including technological information.

The remainder of the paper is structured as follows. Section 2 pro-
vides the required background about the memristor-based CiM and the
state-of-the-art power estimation approaches. Section 3 presents the
synthesis flow and the design space exploration framework, while the
Section 4 gives the experimental results. Finally, the Section 5 draws
the conclusions.

2. Background and state-of-the-art

In this section we provide basic concepts about the memristor-based
CiM architecture as well as about power estimation approaches.

2.1. Memristor-based CiM

The memristor is a two-terminal non-linear passive electrical com-
ponent characterized by a variable electrical resistance, which value
depends on the history of the current flowed through the device itself.
Since we exploit memristors to implement digital circuits, we refer to
the memristor Voltage-Current relation depicted in Fig. 1, detailed in
[13], as the best solution for modeling the device behavior (i.e., taking
into account the ideal response to a pulse-wave). Such model considers
that the voltage applied to memristor terminals does not change the
device resistance until one of the two thresholds± V th is crossed. In the
adopted ideal model, they are symmetrically defined.

We resort to the Snider Boolean Logic (SBL) [13] convention,
whereby a lower resistance (steeper curve denoted as RON) represents a
logic 0 while an higher resistance (lower slope curve denoted as ROFF)
represents a logic 1. Two basic operations can be performed, defined as
SET and RESET. The former allows to program the memristor to RON,
hence at logic 0, while the latter performs the memristor switching to
ROFF, that corresponds to logic 1.

2.1.1. Fast Boolean Logic Circuits
Snider proposed in [13] a design methodology to implement boo-

lean functions on a memristor-based crossbar. The proposed approach
was then improved by Xie et al. in [14]. Let us briefly recall their
proposition referring to it as Fast Boolean Logic Circuit (FBLC). First,
the logic circuit requires that the Boolean function is expressed as sum
of products as shown in Eq. (1).

+ + =AB A B AB AB A B AB· · (1)

The left member of the Eq. (1) can be easily manipulated through
transformation rules (i.e., De Morgan’s laws). The obtained form (right
member of the Eq. (1)) can be computed exploiting three boolean op-
erations: NAND, AND and NOT.

Then, as Fig. 2-a shows, FBLC is divided into blocks. The control
logic is realized by a Finite State Machine (FSM) through several steps
(Fig. 2-b) which are:

INA: INitialize All the memristors to ROFF;
RI: the input block Receives the Inputs;

CFM: ConFigure all Minterms simultaneously, in parallel;
EVM: EValuate all Minterms simultaneously (NAND);
EVR: EValuate Results: F is calculated (AND);
INR: INvert Results: F need to be inverted to achieve f
SO: Send Outputs: the result captured in OL is sent out.

Below, the description of the blocks:

• Input box: where inputs are stored during the RI step;

• NAND box: where minterms are configured during CFM and eval-
uated during EVM;

• AND box: where results of EVM are stored and AND operation is
performed during EVR;

• Output box: where results of EVR are stored and inversion opera-
tion is performed during INR;

For the purpose of realizing each step of the FSM, the authors of
[14] proposed some primitive operations. Each of these operations can be
performed using as many input and output memristors as desired. By
driving the crossbar’s nano-wires with proper voltages during each step,
it is possible to achieve boolean function calculations in a constant
number of steps.

2.2. Power estimation

Power estimation methodologies resort to power models, which are
dependent on the target abstraction level. Clearly, the higher estimation
precision one desires, the lower abstraction level one has to resort to, at
the cost of an increasing estimation time. More in detail, power esti-
mation is based on a macro-modeling approach, in which a power
model is created using pre-characterized power values [15]. This power
pre-characterization can be computed at different abstraction levels
[16,17]. The accuracy and the simulation run-time to obtain the char-
acterization point will depend on the available information of the cir-
cuit structure and activity at the considered level (i.e., gate or transistor
level). Several works have been proposed at gate-level to assess power
consumption per component, i.e. dynamic (switching, short-circuit) and
static or leakage power [18,19]. This kind of works models the gate
current as a triangular shape taking into account different operational
conditions (supply and ground voltages) and input switching conditions
(rise, fall, static). Their results show good accuracy with transistor level
simulations.

State-of-the-art methodologies need to be adapted for the mem-
ristor-based computing architecture. First of all, the static or leakage
power does not need to be taken into account anymore, since the
memristor is a 0-leakage device [6,7]. Secondly, the fact that CiM ar-
chitecture is implemented as a memristor-crossbar requires a new ap-
proach for computing the dynamic power consumption (i.e., power
consumed during memristor switching). In [12], the authors proposed
to compute the power consumption of a given CiM architecture as ex-
pressed by Eq. (2). It corresponds to the sum of the power consumed by
memristor-crossbar (Pxbar), by the CMOS voltage drivers (Pvd,all) and by
the crossbar controller (Pctrl) for all steps Nstep to be executed.
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Fig. 1. Memristor ideal model.
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