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ARTICLE INFO ABSTRACT

A battery cycle life forecast method without requirements of contact measurement devices and long testing time
would be beneficial for industrial applications. The combination of infrared thermography and supervised
learning techniques provided the potential solution to this problem. This research investigates the application of
machine learning techniques—artificial neural networks (ANNs) and support vector machines (SVMs)—in
combination with thermography for cycle life estimation of lithium-ion polymer batteries. Infrared images were
captured at 1 frame/min during 70 min of charging followed by 60 min of discharging for 410 cycles. The
surface temperature profiles during either charging or discharging were used as the input nodes for ANN and
SVM models. The results demonstrated that with thermal profiles as the input, ANN could estimate the current
cycle life of studied cell with the error of < 10% under 10 min of testing time. While when compared to ANN,
the accuracy of SVM-based forecast models was similar but generally required a longer amount of testing time.
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1. Introduction

Lithium-ion batteries are the fastest growing and most promising
candidates in the battery industry since the 1970s. They have a fast
response to energy demand, high energy density and long life spans;
lithium-ion batteries have been widely used in many small electronic
devices and even battery powered electric vehicles. However, no matter
how well a complex system is designed, the system will deteriorate over
time or usage. In addition, the cost of lithium-ion battery failure is high.
Any incident involving lithium-ion batteries could result in loss of
market share and public trust. For example, Samsung's expected losses
from the Galaxy Note 7 battery defects have soared above $3 billion
[1]. To improve the safety and reliability of complex systems, condi-
tion-based maintenance and prognostics methods could be applied to
battery management systems. The battery health information gathered
from the prognostic system can be used to schedule maintenance ahead
in time, prevent malfunction and catastrophic failures [2]. A critical
function required for these applications is accurate prediction of cycle
life to determine how long the battery can last and to evaluate battery
health [3].

The cycle life of batteries, sometimes referred as remaining useful
life (RUL), is defined as the remaining load cycles or time until the
battery reaches its end of life (EoL). The establishment of a prediction

method requires both knowledge of the battery aging process and ad-
vanced data processing techniques. In general, prediction methods for
RUL of the battery can be categorized as model-based or data-driven.
Model-based methods require accurate modeling of the electrochemical
behavior of the battery under cycling conditions. These approaches
commonly involve the establishment of a reliable mathematical model
to describe the capacity of the battery cells and then estimate the re-
maining life. For example, Rong and Pedram [4] developed an analy-
tical model for lithium-ion batteries capacity estimation based on on-
line current and voltage measurements with an error of < 5%. Saha
and Goebel [5] further explored how the RUL can be assessed for
complex systems with internal state variables that are either in-
accessible to sensors or hard to measure under operational conditions.
The algorithm was based on indirect measurements, anticipated op-
erational conditions, and Bayesian statistical analysis of historical data.
Despite these studies, an accurate analytical model is usually difficult to
develop for a complex and dynamic system, especially when the system
operates under noisy and/or uncertain environments. Alternatively,
data-driven approaches usually adopt the previous lifetime pattern of a
similar system to predict the correlation between current performance
data and remaining life. A typical data-driven procedure is described by
Nubhic et al. [6]. The input and output vectors of the required support
vector machine (SVM) learning dataset are generated by preprocessing

* Corresponding author at: Department of Engineering Technology & Industry Distribution, Texas A & M University, College Station, Texas.

E-mail addresses: zhouxf53@tamu.edu (X. Zhou), hsieh@tamu.edu (S.-J. Hsieh).

http://dx.doi.org/10.1016/j.microrel.2017.10.013

Received 4 June 2017; Received in revised form 12 September 2017; Accepted 15 October 2017

0026-2714/ © 2017 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
http://dx.doi.org/10.1016/j.microrel.2017.10.013
http://dx.doi.org/10.1016/j.microrel.2017.10.013
mailto:zhouxf53@tamu.edu
mailto:hsieh@tamu.edu
http://dx.doi.org/10.1016/j.microrel.2017.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2017.10.013&domain=pdf

X. Zhou et al.

Table 1
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Evaluation of RUL estimation methods with respect to embedded devices and the required data length.

Method Reference  Required data input Required time length of the  Prediction error
data
Coulomb counting [17] Voltage, current One complete cycle < 3%
Open circuit voltage (OCV) [18] Voltage One charge cycle < 3%
[19] Voltage 4% of one complete cycle 5% on average
Electrochemical impedance spectroscopy (EIS) [11] Impedance, temperature, voltage, current, state of One complete cycle 2.1% on average
charge variance
Kalman filter based (KF): EKF, DEKF, UKF, SPKF, [20] Capacity (integration of the time dependent One complete cycle < 4.08%
CDKF current)
[21] Temperature, current, state of charge One complete cycle < 4%
Support vector machine (SVM)/relevance vector [22] Capacity One complete cycle < 2.28%
machine (RVM)
Particle filtering: SIR, RBPF, Spherical Cubature [23] Capacity One complete cycle < 2.17%
Particle Filter [24] Capacity One discharge cycle ~11% near the end of the
life
State space modeling [25] Capacity One discharge cycle ~13% near the end of the
lift
Fuzzy logic [26] Voltage One charge cycle 1.4%-9.2%
[27] Direct current resistance One charge cycle < 5%
Autoregressive integrated moving average model [28] Capacity Previous cycles 5% on average
Gaussian process functional regression [29] Capacity One charge/discharge 1.5-6%
cycle
Bayesian approach [30] Capacity Previous cycles < 10% in three cases
Magnetic field probing [12] Stratification, electrode structure and current N/A N/A
profile
Sample entropy [31] Sample entropy of the voltage response One complete cycle 2% on average

the measured data through load collectives, preparing training data,
and searching for optimal SVM parameters. Therefore, using data from
previous years, the current states of charge and health can be estimated.

Extensive reviews of state of the art data-driven methods for pre-
dicting cycle life/RUL of lithium-ion battery states and parameters have
been provided by previous scholars [7-9], where common prediction
methods have been categorized and analyzed. These reviews focus on
applications of the reviewed algorithms and the corresponding pre-
diction errors. However, the requirements for testing times to generate
accurate estimations have rarely been summarized. When testing bat-
teries, reducing the testing time increases testing efficiency. For off-line
battery testing, the setup time for the sensors is equally important.
Consequently, the information from embedded sensors is also worth
investigating.

The necessary information from the embedded devices and the re-
quired data length of several typical research papers have been sum-
marized in Table 1, and they are organized following the categories
established by Ungurean et al. [7]. From Table 1, several limitations of
the current prognostic methods should be noted. Firstly, although the
approaches vary, most methods require at least one full charge or dis-
charge cycle (SOC from 100% to 0%, or vice versa) to be conducted to
determine the current cycle/remaining life. With the charge/discharge
current set as 1C, a minimum of 1 h of testing time would be needed,
which could be too long for the practical application. Secondly, a
number of reviewed battery RUL estimation methods use the battery
capacity or internal resistance as health index. However, as pointed out
by Liu et al. [10], it is difficult to take such measurements in online
applications. Finally, the characteristics (maintenance costs and setup
time) of the condition monitoring system need to be considered. Al-
though advanced technologies, such as electrochemical impedance
spectroscopy [11] and magnetic field probing [12], have been applied
in previous research, only battery current, voltage, and temperature are
accessible for a low-cost measurement system. Therefore, it is im-
perative to develop a low-cost method to estimate the cycle life of the
batteries within a relatively short amount of time.

To reduce setup time and potential hazards when in contact with the
electrical system, non-destructive/contact testing methods have re-
cently received attention. Previous study [13] demonstrated that the
cell temperature increases during charge and discharge, and such a
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temperature increment is correlated to the physical and electrochemical
condition of the cells. Therefore, it is possible to correlate the thermal
behavior of the cells during charge and discharge to the RUL. Currently,
the temperature of the batteries is commonly measured by thermo-
couples adhered to the surfaces [14,15]; however, only a limited
number of points on the surface can be sampled by such approaches. A
promising idea is to use thermography to probe the changes of external
and internal thermal properties during the battery cycling condition.
Infrared thermography has already been demonstrated to be useful for
measuring the internal temperature distribution of the battery by Ro-
binson et al. [16]. They demonstrated that abnormal temperature in-
creases during the cycling process might suggest the battery is under
thermal runaway, potential thermal runaway, or other serious aging
conditions. Therefore, in this paper, an infrared imaging technique was
used to monitor the surface temperature change of battery under cy-
cling conditions and data-driven methods were used to determine the
current state of health of the battery cells using either thermal and
electrical data as input. The research questions of this study are:

1) Can the battery cycle life be estimated from thermal profiles during
the cycling process?

2) If the cycle life of batteries can be estimated with a certain accuracy,
what is the minimum testing time?

This paper is organized as follows: Section 2 introduces the ex-
perimental methodology and design; Section 3 describes the two data-
driven processing methods used in this paper; and Section 4 compares
the performances of the models in forecasting of the cycle life before
conclusions are drawn in Section 5.

2. Experimental design and methodology
2.1. Fundamentals of infrared thermal imaging

Infrared (IR) thermal imaging, also often briefly called thermo-
graphy, is a technique that could capture the radiative energy emitted
by objects and transform such energy into a temperature distribution by
means of an infrared camera or sensor [32]. Thermography can be di-
vided into two categories—active and passive thermography. If no
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