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Abstract In this paper, an iterative adaptive critic design (ACD) algorithm is proposed to solve a class of discrete-time two-
person zero-sum games for Roesser type 2-D system. The idea is to use adaptive critic technique to obtain the optimal control
pair iteratively to make the performance index function reach the saddle point of the zero-sum games. The proposed iterative ACD
algorithm can be implemented based on the input and state data without the system model. Stability analysis of the 2-D system is
presented and the convergence property of the performance index function is also proved. Neural networks are used to approximate
the performance index function and compute the optimal control policies, respectively, for facilitating the implementation of the
iterative ACD algorithm. The optimal control scheme of the air drying process is given to illustrate the performance of the proposed
method.
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A large class of complicated practical systems are con-
trolled by more than one controller or decision maker with
each using an individual strategy. These controllers of-
ten operate in a group with a general performance index
function as a game[1]. Zero-sum game theory has been
widely applied to decision making and control engineering
problems[2−5]. In these situations, many control schemes
are presented in order to reach some form of optimality[6−7].
In [8], zero-sum game was proposed to solve multiuser op-
timal flow control. In [9], the zero-sum game problem was
discussed for noncooperative decision makers. Based on the
zero-sum theory, the designs of controller in the worst case
and the design of H∞ controller were proposed in [10−12].
However, aforementioned results on zero-sum game are only
for the one-dimensional systems. In the real world, many
complicated control systems are described by 2-dimensional
(2-D) structures[13−14]. The key feature of a 2-D system is
that the information is propagated along two independent
directions. Many physical processes, such as thermal pro-
cesses, image processing, signal filtering, etc., have a clear
2-D structure. The 2-D system theory is frequently used as
an analysis tool to solve some problems, e.g., iterative learn-
ing control[15] and repetitive process control[16]. So many
control schemes are presented for 2-D system in order to
obtain the optimal performance[17−18], while there are few
results on the zero-sum games for 2-D systems. The great
difficulty of the zero-sum games for 2-D systems is that
the optimal recurrent equation, so called Hamilton-Jacobi-
Isaacs (HJI) equation, is invalid in 2-D structure, which
means that the optimal control pair cannot be obtained by
the classical dynamic programming theory. Another diffi-
culty lies in the fact that for many 2-D systems the model
of the system cannot be obtained inherently. So it is im-
portant and necessary to give a new method to solve the
zero-sum games for 2-D system without a system model.
This motivates our research.

The adaptive critic designs (ACDs) are very useful tools
in solving the optimal control problems and have received
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considerable attention for the past three decades[19−22].
ACDs were firstly proposed in [23 − 25] as a way to solve
optimal control problems forward-in-time. ACDs combine
reinforcement learning technique and dynamic program-
ming theory with neural networks. In [13], the ACDs
were classified into four main schemes: heuristic dynamic
programming (HDP), dual heuristic dynamic programming
(DHP), action dependent heuristic dynamic programming

(ADHDP), also known as Q-learning[23], and action depen-
dent dual heuristic dynamic programming (ADDHP). In
[26], another two ACD schemes known as globalized-DHP
(GDHP) and ADGDHP were developed. Though in recent
years, ACDs have been further studied by many researchers
such as [27−35], wherein most results focus on the optimal
control problem with a single controller. Only in [36], based
on HJI equation, zero-sum game was discussed for 1-D sys-
tem. To the best of our knowledge, there are no results
discussing how to solve the zero-sum game problem for 2-D
systems.

In brief, it is the first time for the zero-sum game to solve
for a 2-D system by ACD technique. The main contribu-
tions of this paper include:

1) Propose a new optimality principle for Roesser type
2-D system and obtain the optimal control formulation in
theory.

2) Propose an iterative algorithm based on ACD tech-
nique (iterative ACD algorithm for brief) to obtain the op-
timal control pair iteratively with rigorous stability and
convergence analysis.

3) Develop the iterative ACD algorithm into data-driven
situation. What is needed to know is only the input and
state data, and the model of the system is not required.

This paper is organized as follows. Section 1 presents the
preliminaries and assumptions. In Section 2, the optimal
control for zero-sum games for 2-D systems is proposed and
the properties of the optimal control are also discussed. In
Section 3, data-based iterative ACD algorithm is proposed
with the convergence analysis. In Section 4, the neural net-
work implementation for the control scheme is discussed.
In Section 5, an example is given to demonstrate the effec-
tiveness of the proposed control scheme. The conclusion is
drawn in Section 6.

1 Preliminaries and assumptions

Basically, we consider the following discrete-time linear
Roesser type 2-D system

xxx+(k, l) = Axxx(k, l) + Buuu(k, l) + Cwww(k, l) (1)
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xxxh(0, l) = fff(l), xxxv(k, 0) = ggg(k) (2)

with

xxx(k, l) =

[
xxxh(k, l)
xxxv(k, l)

]
, xxx+(k, l) =

[
xxxh(k + 1, l)
xxxv(k, l + 1)

]
(3)

where xxxh(k, l) is the horizon state in Rn1 , xxxv(k, l) is the
vertical state in Rn2 , uuu(k, l) and www(k, l) are the con-
trol inputs in Rm1 and Rm2 . Let the system matri-
ces A ∈ R(n1+n2)×(n1+n2), B ∈ R(n1+n2)×n1 , and C ∈
R(n1+n2)×m2 . Assume all the system matrices are nonsin-
gular and the system matrices can be expressed by

A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
, C =

[
C1

C2

]
(4)

The function fff(l) and ggg(k) are corresponding boundary
conditions along two independent indirections.

We define the following denotements

(k, l) ≤ (m, n) if and only if k ≤ m and l ≤ n

(k, l) = (m, n) if and only if k = m and l = n

(k, l) < (m, n) if and only if (k, l) ≤ (m, n) and

(k, l) �= (m, n) (5)

Then, the infinite-time performance index function for
2-D systems can be given by

V (xxx(0, 0),uuu,www) =
∑ ∑

(0,0)≤(k,l)<(∞,∞)

(
xxxT(k, l)Qxxx(k, l)+

uuuT(k, l)Ruuu(k, l) + wwwT(k, l)Swww(k, l)
)
(6)

where Q ≥ 0, R > 0, and S < 0 are with suit-
able dimensions and L(xxx(k, l),uuu(k, l)) = xxxT(k, l)Qxxx(k, l) +
uuuT(k, l)Ruuu(k, l) + wwwT(k, l)Swww(k, l) is the utility function.
For the above zero-sum game, the two control variables
uuu and www are chosen, respectively, by player I and player
II where player I tries to minimize the performance index
function V (xxx), while player II attempts to maximize it. The
following assumptions are proposed that are in effect in the
remaining sections.

Assumption 1. The 2-D system (1) is controllable un-
der the control variables uuu and www.

Assumption 2. For the boundary conditions for the

2-D system (1), the terms
∑∞

k=0
xxxvT(k, 0) xxxv(k, 0),∑∞

l=0
xxxhT(0, l) xxxh(0, l), and

∑ ∑
(0,0)≤(k,l)<(∞,∞)

xxxvT(k, 0)×

xxxh(0, l) are all bounded.
Assumption 3. There exists an unique saddle point of

the zero-sum game for the 2-D system (1).
There are some important characters that must be

pointed out. Firstly, for the 1-D control system, the bound-
ary condition is just an initial point of state, while the
boundary conditions of 2-D system are two given state
curves along two different directions. Secondly, for the zero-
sum games of 2-D system under the infinite time horizon,
the boundary state trajectories are uncontrollable and so

the terms
∑∞

l=0
xxxT(k, 0)Qxxx(k, 0),

∑∞
l=0

xxxT(0, l)Qxxx(0, l),

and
∑ ∑

(0,0)≤(k,l)<(∞,∞)

xxxT(k, 0)Qxxx(0, l) may be infinite, which

means the performance index function (6) is infinite.

Therefore, Assumption 2 is necessary. Thirdly, the bound-
ary conditions fff(l) and ggg(k) in (2) should be boundary, but
not necessary smooth or continuous functions. For exam-
ple, let

fff(l) =

{
ccc,
000,

l ≤ T
l > T

(7)

where c is any real constant number and T is a given real
number. So, Assumption 2 is not very strong.

According to Assumption 3, the optimal performance
index function can be expressed as

V ∗(xxx(k, l)) = min
uuu

max
www

∑ ∑
(k,l)≤(i,j)<(∞,∞)

(
xxxT(i, j)Qxxx(i, j)+

uuuT(i, j)Ruuu(i, j) + wwwT(i, j)Swww(i, j)
)

=

max
www

min
uuu

∑ ∑
(k,l)≤(i,j)<(∞,∞)

(
xxxT(i, j)Qxxx(i, j)+

uuuT(i, j)Ruuu(i, j) + wwwT(i, j)Swww(i, j)
)

(8)

2 The optimal control for the zero-sum
games for 2-D systems

For zero-sum games for 1-D systems, the optimal perfor-
mance index function can be written by a recurrent formu-
lation according to the dynamic programming principle[36].
However, for zero-sum games for 2-D systems, the dynamic
programming principle may not be true. The main diffi-
culty lies in the state of the 2-D system in the next stage
coupling with the states of two different directions in the
current stage and then the dynamic programming equation
of the zero-sum games for 2-D systems does not exist. So
in this paper, we propose an optimality principle for 2-D
system and obtain the expressions of optimal control pair
for the zero-sum game.

2.1 The optimality principle for zero-sum games
for 2-D systems

In this subsection, we will propose the optimality prin-
ciple for the zero-sum games for 2-D systems, and discuss
the properties of the optimal control pair derived by the
principle.

Theorem 1. Given the performance index function de-
fined as (6), if uuu(k, l) minimizes and www(k, l) maximizes the
performance index function (6), respectively, subject to the
system equation (1), and then there are (n+m)-dimensional
vector sequences λλλ(k, l) and λλλ+(k, l) defined as

λλλ+(k, l) =

[
λλλh(k + 1, l)
λλλv(k, l + 1)

]
, λλλ(k, l) =

[
λλλh(k, l)
λλλv(k, l)

]
(9)

where λλλh(k, l) ∈ Rn1 and λλλv(k, l) ∈ Rn2 , such that for all
(0, 0) ≤ (k, l) < (∞,∞)

1) State equation:

xxx+(k, l) =
∂H(k, l)

∂λλλ+(k, l)
(10)

2) Costate equation:

λλλ(k, l) =
∂H(k, l)

∂xxx(k, l)
(11)
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