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a b s t r a c t

Anomaly detection is addressed within a statistical framework. Often the statistical model is composed of
two types of parameters: the informative parameters and the nuisance ones. The nuisance parameters are
of no interest for detection but they are necessary to complete the model. In the case of unknown, non-
random and non-bounded nuisance parameters, their elimination is unavoidable. Some approaches
based on the assumption that the nuisance parameters belonging to a subspace interfere with the infor-
mative ones in a linear manner, use the theory of invariance to reject the nuisance. Unfortunately, this
can lead to a serious degradation of the detector capacity because some anomalies are masked by nui-
sance parameters. Nevertheless, in many cases the physical nature of nuisance parameters is (partially)
known, and this a priori knowledge permits to define lower and upper bounds for the nuisance param-
eters. The goal of this paper is to study the statistical performances of the constrained generalized like-
lihood ratio test used to detect an additive anomaly in the case of bounded nuisance parameters. An
example of the integrity monitoring of GNSS train positioning illustrates the relevance of the proposed
method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The state of the art

Monitoring systems is becoming increasingly important to
maintain reliability and safe system operation. It can be defined
as the set of actions carried out to detect, isolate faulty measure-
ment sources and then remove them before they affect the system
performance (Isermann, 2006). The role of detection is to identify
any anomaly event indicating a distance from the system behavior
compared to its nominal behavior. Furthermore, anomaly isolation
determines the location of the detected anomaly. In this paper,
however, the focus will be on anomaly detection only. The most
important issue in the monitoring safety-critical systems is to
detect anomalies that infect the monitored system (Basseville &
Nikiforov, 2002; Fillatre & Nikiforov, 2007; Fouladirad & Nikiforov,
2005; Lacresse, Grall, & Nikiforov, 2005). Fault detection is essen-
tial for proper and safe system operation. The need for monitoring
techniques that can accurately and quickly detect abnormal
situations and anomalies has greatly attracted the attention of

researchers and engineers. Over the past few decades, several
monitoring techniques have been developed (Chaitanya, 2011;
Qingsong, 2004; Venkatasubramanian, Rengaswamy, Kavuri, &
Yin, 2003a, Venkatasubramanian, Rengaswamy, Kavuri, & Yin,
2003c). Anomaly detection methods can be classified into three
main categories: data-based or model-free methods, model-based
or analytical methods, and knowledge-based methods (Venkata-
subramanian et al., 2003a, 2003c). Anomaly detection using
knowledge based methods is usually a heuristic process. The ap-
proaches in this category are mostly based on causal analysis, ex-
pert systems (Kim et al., 2005), possible cause and effect graphs
(PCEG) (Wilcox & Himmelblau, 1994), failure modes and effects
analysis (FMEA) (Wirth, Berthold, Krämer, & Peter, 1996), Hazop-
digraph (HDG) (Venkatasubramanian, Rengaswamy, Kavuri, &
Yin, 2003b), or Bayesian networks (Sylvain & Abdessamad, 2008).
The main limitation of these methods is that they are more suitable
to small-scale systems with a small number of variables, and thus
may not be appropriate to monitor complex systems. Furthermore,
data-based anomaly detection methods rely on the availability of
historical data of the inspected system under normal operation
mode (Venkatasubramanian et al., 2003c). These data are first used
to build an empirical model of the system, which is then used to
detect anomalies in future data. Data-based monitoring methods
include the latent variable methods, e.g., partial least square
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(PLS) regression, principal component analysis (PCA), canonical
variate analysis (CVA), independent component analysis (ICA)
(Chaing, Russel, & Braatz, 2001; Venkatasubramanian et al.,
2003c), neural networks (Subbaraj & Kannapiran, 2010), Fuzzy sys-
tems (Dexter & Benouarets, 1996), and pattern recognition meth-
ods (Mohammadi & Asgary, 2005). However, the applicability of
data-based methods mainly depends on the availability of quantity
and quality of the data. On the other hand, model-based or analyt-
ical anomaly detection methods rely on comparing the system
measured variables with the information obtained from a mathe-
matical model of the monitored system, which is usually devel-
oped based on some fundamental understanding of the system
under anomaly-free conditions. These methods received more
attention by engineers and practitioners than the data-based
methods because of their mathematical and systematic character-
istics. The residuals, which are the difference between the mea-
surements and the model predictions, is an anomaly indicator
about the monitored system. Using the information carried by
the residuals, anomalies can be detected and isolated (Kinnaert,
2003; Nyberg & Nyberg, 1999). When the monitored system is un-
der normal operating conditions (no anomaly), the residual is zero
or close zero due to modeling uncertainties and measurement
noise. However, when an anomaly occurs the residuals deviate sig-
nificantly from zero indicating the presence of a new condition that
is significantly distinguishable from the normal faultless working
mode (Kinnaert, 2003; Nyberg & Nyberg, 1999). The model-based
monitoring approaches include the observer-based approaches
(Clark, Fosth, & Walton, 1975; Patton, Clark, & Frank, 1989; Xu,
2002), parity space approaches (Chow & Willsky, 1984; Frank,
1990; Patton & Chen, 1991; Ragot, Maquin, & Kratz, 1993;
Staroswiecki, 2001), and interval approaches (Adrot, 2000; Adrot,
Ploix, & Ragot, 2002; Benothman, Maquin, Ragot, & Benrejeb,
2007). Of course, the effectiveness of these model-based monitor-
ing methods depends on the accuracy of the models used.

In the framework of parametric model-based anomaly detec-
tion approaches (Venkatasubramanian et al., 2003a), the anomalies
detection is based on the model which describes the monitored
system. The model is usually developed based on some fundamen-
tal understanding of physics of the process, under fault-free condi-
tions. Often, this model is composed of two types of parameters:
the informative parameters and the nuisance ones. Typically, the
informative parameters including the anomalies, often called
the parameters of interest, define the statistical hypotheses, and
the nuisance parameters are of no interest for detection but they
are necessary to complete the model (Basseville & Nikiforov,
2002). It is supposed that the nuisance parameters are unknown
but non-random. In particular, this means that the nuisance can
be intentionally chosen by adversary (or attacker) to maximize
the negative impact of anomaly on the monitored system (by
masking the anomaly, for example). The nuisance parameter has
no desirable impact on the performance indexes. When designing
a test for deciding between two hypotheses in the presence of a
nuisance parameter, the goal is to achieve performance indexes
independent from the actual value of the nuisance parameters.
Therefore, the only solution is to reduce or eliminate the impact
of the nuisance parameters on the decision function. Ideally, we
would like to design a decision function which depends only on
the parameter of interest.

How to deal with nuisance parameters is an important problem
in the framework of statistical anomaly detection. Several elimina-
tion methods are available to handle these parameters. It is impos-
sible to describe all of them in this paper. We overview some key
ideas to reduce or eliminate the effect of nuisance parameters. In
the likelihood approach, the problem is to find a likelihood func-
tion for the parameter of interest only (Basseville & Nikiforov,

2005). Another approach consists of constructing a pseudo-likeli-
hood function for the parameter of interest (Basu, 1977; Liseo,
1999; Pawitan, 2001; Reid & Fraser, 2003; Severini, 2000). A pseu-
do-likelihood function depends only on the data and the interest
parameter. Conditional and marginal likelihood functions are
examples of what are called pseudo-likelihood functions. These ap-
proaches use the conditioning or marginalization to eliminate the
nuisance parameters from the likelihood function and they are
only available when the model has a particular structure. Further-
more, even when a marginal or conditional likelihood functions ex-
ists, calculation of the likelihood function is often difficult
(Pawitan, 2001; Severini, 2000). An alternative approach is to use
the modified profile likelihood function which is available for gen-
eral models (Pawitan, 2001; Severini, 1998, 2000). The modified
profile likelihood may be derived as an approximation to either a
marginal or conditional likelihood when either of those likelihoods
exists. Furthermore, the calculation of the modified profile likeli-
hood function does not require the existence of a marginal or con-
ditional likelihood and, hence, it has been adopted for general use.
Also there is a Bayesian approach which is based on the knowledge
of a priori law on nuisance parameters (Berger, Liseo, & Wolpert,
1999; Basu, 1977; Liseo, 1999). It is necessary to fix an a priori
law of nuisance parameter, compute the posterior, integrate out
the nuisance parameter from the posterior to arrive at the poster-
ior distribution (integrated likelihood function) which depend only
on the parameter of interest. The form of the posterior distribution
depends on the a priori law used. In literature (Basu, 1977; Liseo,
1993, 1999; Robert, 2006) various a priori laws on the nuisance
parameters were presented, among the priori laws more often used
are the uniform law, the Haar measure, the reference prior and the
law of Jeffrey (Eaton & Sudderth, 2010). The Bayesian approach is
especially efficient if a reliable a priori information is available
on the nuisance parameters. The invariant approach (Borovkov,
1998; Ferguson, 1967; Lehmann, 1996) is based on the nuisance
rejection and, therefore, does not use any a priori information on
the distribution of nuisance parameter.

1.2. Motivation

The elimination of nuisance parameters is universally recog-
nized as a major problem of statistics (Basu, 1977; King, 1996).
In the case of non-Bayesian approach, the elimination of the un-
known but non-random nuisance parameters is unavoidable. This
elimination presents several difficulties. If no a priori information
is available on the nuisance, it is assumed that the nuisance param-
eters belong to a certain subspace of the observation space. Often
the theory of invariant tests is used to reject the nuisance param-
eters in such a case, especially if the nuisance parameters interfere
with the informative ones in a linear manner. The rejection of the
nuisances by using the theory of invariance lead to a serious deg-
radation of the detector capacity and the problem of anomaly
detectability appears, i.e. some anomalies can be masked by the
nuisance parameters due to the procedure of their rejection
(Fillatre & Nikiforov, 2007). Nevertheless, in many cases the phys-
ical nature of nuisance parameters is (partially) known, and this
knowledge may allow us to define lower and upper bounds to limit
the variations of these parameters (the power of an engine is lim-
ited, the altitude of an aircraft is always positive. . .) (Lacresse &
Grall, 2001). This information have to be integrated in the statisti-
cal decision rule to improve the power function of the detector and
to reduce the subset of undetectable anomalies. It was shown that
taking into account the lower and upper bounds of the nuisance
parameters the anomaly detector performs better than in the case
of un bounded nuisance parameters (Harrou, Fillatre, & Nikiforov,
2008).
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