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a b s t r a c t

Large scale systems (LSS) have been traditionally characterized by a large number of variables,
nonlinearities and uncertainties. Their decomposition into smaller, more manageable subsystems, possibly
organized in a hierarchical structure, has been associated with intense and time – critical information
exchange and with the need for efficient and coordination mechanisms. A critical overview of the different
theories and algorithms for LSS is provided. The issue of system complexity has become transparent. As the
complexity of such systems increase and the presence of uncertainties play a role on the performance of LSS
and HMS, new system theoretic methods become more crucial and are urgently needed. Intelligent Systems
(IS) and Fuzzy Cognitive Maps (FCM) theories are such new theoretic approaches in modeling Large Scale
Dynamic Complex Systems (LSDCS). An FCM is based on fuzzy logic and Neural Networks. FCM integrates
the accumulated experience and knowledge on the operation of the system, as a result of the methods by
which it is constructed. The new theories of FCMs are reviewed and used to model LSS and Dynamical
Hierarchical Control Systems. A number of applications in using FCM to model complex systems from
industrial processes economics, energy, environment, health international relations and political
developments are mentioned. New challenges and research opportunities are presented and discussed.
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1. Introduction

Throughout the natural and artificial world one observes phe-
nomena of great complexity. Yet research in physics and to some
extent biology and other fields has shown that the basic compo-
nents of many systems are quite simple. It is now a crucial problem
for many areas of science to elucidate the mathematical mecha-
nisms by which large numbers of such simple components, acting
together, can produce behavior of the great complexity observed.
As a result ‘‘complex systems theory’’ cuts across the boundaries
between conventional scientific disciplines. It makes use of ideas,
methods and examples from many disparate fields. And its results
should be widely applicable to a great variety of scientific and engi-
neering problems.

Complex systems theory is now gaining momentum, and is
beginning to develop into a scientific discipline in its own right. I
suspect that the sociology of this process is crucial to the future
vitality and success of the field. Several previous initiatives in the
direction of complex systems theory made in the past have failed
to develop their potential for largely sociological reasons. One
example is cybernetics, in which the detailed mathematical results
of control theory came to dominate the field, obscuring the original
more general goals. One of the disappointments in complex sys-
tems theory so far is that the approaches and content of most of
the papers that appear reflect rather closely the training and back-
ground of their authors. Only time will ultimately tell the fate of
complex systems theory. But as of now the future looks bright.

In this paper, after a critical short overview of modeling and
analyzing LSS and MHS we propose a novel fuzzy neural network
which equips the inference mechanism of original FCMs proposed
by Kosko more than 25 years ago (Kosko, 1986) with the automatic
determination of membership functions, as well as quantification
of causalities. Our approach is able to identify the membership
functions and causalities from real data, which makes the con-
struction of FCM for complex systems independent of expert
knowledge. Another aim of this paper is to introduce FCM to the
academic and scientific communities and try to raise challenging
and interesting questions related to theories and practices of the
LSS and MHS. The outline of the paper is as follow: in Section 2
an overview of LSS is provided covering the most challenging
issues such as stabilization and decentralized control. In Section 3
an overview of FCMs is provided covering the basic theories while
the fundamentals and new proposed algorithms are given in Sec-
tion 4. Section 5 covers learning algorithms for FCMs and a new
algorithm that has been developed by the research team of the
Laboratory for Automation and Robotics is provided and analyzed.
In Section 6 the new and fast developing scientific concepts of Sys-
tems of Systems (SoS) and the Cyber-Physical Systems (CPS) are
briefly mentioned and their relation to theories of LSS and MHS
are outlined. Finally Conclusions and Future Research directions
are provided in Section 7.

2. Large scale systems: An overview

2.1. Introductory remarks

Recently, there has been a growing interest in a class of complex
systems whose constituents are themselves complex. Complexity
and dynamic order of controlled engineering systems is constantly
increasing. The original concept-term of Large Scale Systems (LSS)
has now turned to Large Scale Dynamic Complex Systems (LSDCS)
in order to accommodate the complexity and dynamic behavior of
such systems. LSDCS appear in many engineering fields, such as,
power systems, manufacturing, aerospace, civil and construction
engineering, energy, medical, environment, transportation,

agriculture as well on other non-engineering fields such as
finances, business and economics, military, psychology, sociology,
physiology, political and social studies and education. Modeling
of these systems often result in very high-order models imposing
great challenges to the analysis, design and control problems.
’Efficient Modeling and Control of Large-Scale Systems’ compiles
state-of-the-art contributions on recent analytical and computa-
tional methods for addressing model reduction, performance anal-
ysis, feedback control design and ‘‘optimization’’ for such systems.
Also addressed at length are new theoretical developments, novel
computational approaches and illustrative applications to various
fields, along with: an interdisciplinary focus emphasizing methods
and approaches that can be commonly applied in different engi-
neering application fields. Efficient Modeling and Control of
Large-Scale Systems’ is an ideal volume, for the years to come,
for engineers and researchers working in the fields of control and
dynamic systems. The problems of dynamic modeling of large scale
complex systems are considered with a view to developing
reduced-order models using aggregation and decoupling. From a
system-theoretic point of view, a complex dynamic network can
be considered as a large-scale system with special interconnections
among its dynamical nodes. The large-scale system theory has
been extensively studied in the last four decades, and many inter-
esting results have been established, on such basic issues as for
example decentrally fixed modes, multilevel control, decentralized
controllers design, multilevel and hierarchical stabilization diago-
nal Lyapunov function method, M-matrix method to mention a
few. However very early in the studies of LSS, in 1974, R. Bellman
had said ‘‘We need new theories of LSS. Many ‘‘new’’ theories and
methods ‘‘analyzing’’ and ‘‘designed’’ -LSS have been developed
since then, without ‘‘having’’ an overall and generic theory(ies) of
LSS. The explanations for this are various and differ depending
the needed solution for a given large complex system.

2.2. Modeling and controling Large Scale Dynamic Complex Systems
(LSDCS)

2.2.1. Introductory remarks
Advances in our understanding of the traditional discipline are

being made. At the same time new modes of systems engineering
are emerging to address the engineering challenges of integrated
embedded systems and enterprise systems. Even at this early point
in their evolution, these new modes of systems engineering
are evincing their own principles, processes and practices. Some
are different in degree than engineering at the system level while
others are different in kind. Depending the given dynamic complex
system and the particular problem under consideration, a ‘‘specific
problem solution’’ was developed.

Till the late 1960s and early 1970s the traditional approach in
systems theory was to model systems in certain standard or
canonical form and then design a centralized ‘‘control system’’.
For example, the usual approach in classical as well as in modern
control theory was (and still is) to transform the equations
describing a given system in such a way that the system in ques-
tion may be represented, for example, in the familiar block dia-
gram form of Fig. 1.

The usual mathematical model been used has been the state
model representation for Linear Time-Invariant Systems:

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ

ð1Þ

where x(t) is a n � 1 state vector, u(t) is the m � 1 input of the sys-
tem and y(t) is a r � 1 vector describing the system’s output and the
A, B, C and D are known matrices with the appropriate dimensions
of the dynamic system.
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