Applied Ergonomics 70 (2018) 182-193

journal homepage: www.elsevier.com/locate/apergo

Contents lists available at ScienceDirect

Applied Ergonomics

Applied
Ergonomics

The influence of commenting validity, placement, and style on perceptions W

Check for

of computer code trustworthiness: A heuristic-systematic processing s

approach

Gene M. Alarcon™”, Rose F. Gamble”, Tyler J. Ryan®, Charles Walter”, Sarah A. Jessup*,

David W. Wood®, August Capiola®

2 Air Force Research Laboratory, United States

® University of Tulsa, United States

€ CSRA, United States

4 Oak Ridge Institute for Science and Education, United States
€ Consortium of Universities, United States

ABSTRACT

Computer programs are a ubiquitous part of modern society, yet little is known about the psychological pro-
cesses that underlie reviewing code. We applied the heuristic-systematic model (HSM) to investigate the in-
fluence of computer code comments on perceptions of code trustworthiness. The study explored the influence of
validity, placement, and style of comments in code on trustworthiness perceptions and time spent on code.
Results indicated valid comments led to higher trust assessments and more time spent on the code. Properly
placed comments led to lower trust assessments and had a marginal effect on time spent on code; however, the
effect was no longer significant after controlling for effects of the source code. Low style comments led to
marginally higher trustworthiness assessments, but high style comments led to longer time spent on the code.
Several interactions were also found. Our findings suggest the relationship between code comments and per-
ceptions of code trustworthiness is not as straightforward as previously thought. Additionally, the current paper

extends the HSM to the programming literature.

1. Introduction

Computer software, or computer code, is central to almost every
aspect of our modern lives. However, little is known about the psy-
chological aspects of code and the influences on why programmers
choose to reuse specific code they did not create, given there are po-
tential risks to reusing code. For example, the OpenSSL encryption
many banks used for retaining secured connectivity was generally
thought to be secure. However, Google's security team detected a ser-
ious issue in the software, known as Heartbleed (Grubb, 2014;
Durumeric et al., 2014; CVE-2014-0160) that resulted in the theft of
financial and personal data. The prevalence of code reuse and its as-
sociated risks suggest perceived code trustworthiness is an important
psychological context that is under researched. Comments are an im-
portant aspect of computer code, particularly during code inspection
(Porter et al., 1998). Comments should help the programmer navigate
the code and understand its functional intent (Savitch, 2014). The
current study sought to explore the role of code comments on how

* Corresponding author.
E-mail address: gene.alarcon.1@us.af.mil (G.M. Alarcon).

https://doi.org/10.1016/j.apergo.2018.02.027

programmers perceive the trustworthiness of code.
1.1. Trust

Trust has traditionally been thought of as an interpersonal con-
struct. However, the literature has expanded the investigation of trust
to organizations (Mayer et al., 1995), automation (Lyons et al., 2016),
human-machine teaming (de Visser and Parasuraman, 2011), and
websites (Flavian and Guinaliu, 2006). We extend the trust literature to
focus on computer code. Trust can be separated into three aspects: trust
beliefs, trust intentions, and trust actions (Jones and Shah, 2016). Trust
beliefs are perceptions of a referent (i.e., perceived trustworthiness of
the code). It is important to note, trust beliefs are not necessarily fac-
tually based, and thus may be inaccurate. Trust intentions are the
willingness to be vulnerable, to someone or something. Trust actions
are the behavioral reliance on the referent, such as reusing a piece of
code. The current study focused on trust beliefs and trust actions.

Received 25 June 2017; Received in revised form 19 December 2017; Accepted 27 February 2018

0003-6870/ © 2018 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00036870
https://www.elsevier.com/locate/apergo
https://doi.org/10.1016/j.apergo.2018.02.027
https://doi.org/10.1016/j.apergo.2018.02.027
mailto:gene.alarcon.1@us.af.mil
https://doi.org/10.1016/j.apergo.2018.02.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apergo.2018.02.027&domain=pdf

G.M. Alarcon et al.

1.2. Code reuse

Code is a compilation of commands executed by a computer, written
in a programming language, such as Java, C+ +, and C#. Although
trained computer scientists and information technology professionals
develop the software, code can get very complex and confusing as
multiple systems are integrated. To expedite development, pro-
grammers often reuse code in new software. However, by integrating
code previously written for other projects, programmers accept a cer-
tain level of risk and vulnerability. Programmers rely on both per-
functory perceptions and in-depth inspections of the code when de-
ciding whether to reuse it. This cognitive evaluation is a perception of
trustworthiness (Alarcon et al., 2017b). Psychological theories may
help to illuminate the relationship between programmers and code.
Future development of software could then encompass psychological
engineering principles, improving end-product quality and efficiency in
software production.

Frakes and Kang (2005) defined code reuse as, “the use of existing
software or software knowledge to construct new software” (p. 529). A
recent article in CNET projected that roughly 80-90% of code is reused
(Hautala, 2015). Code reuse indicates programmers perceived the code
as trustworthy because they have integrated it into the program. Re-
using code can increase productivity (Banker and Kauffman, 1991) and
possibly produce better code, as the code has been previously tested
and/or repeatedly updated (Lim, 1994). Much of the literature on code
reuse arose from organizational and economic perspectives, high-
lighting the benefits of implementing reuse on a systemic level. By re-
using code assets, programmers can forego the time and effort required
to rewrite software (Banker and Kauffman, 1991). Reuse also allows for
increases in the flexibility and complexity of code (Babar et al., 2004).
However, reusing code may carry over software bugs that were not
resolved in previous implementations (Hautala, 2015). Although re-
search has demonstrated the usefulness of reusing code, little research
to date has explored how programmers perceive code trustworthiness
to pursue reuse.

1.3. Heuristic-systematic processing model

Trust in code is a relatively new field of research in psychology and
computer science. Indeed, no theories or process models have been
developed specifically for this area of research. Instead, we leverage
research from the psychological literature. The heuristic-systematic
model (HSM) describes how people process persuasive messages from
an information processing perspective (Chaiken, 1980; Chen et al.,
1999). Although the model was created to investigate the use of per-
suasion in contexts such as politics and consumer purchases, it can also
be extended to investigate trust in code. The HSM postulates two types
of processing that influence persuasion: heuristic processing and sys-
tematic processing. A heuristic is a “strategy that ignores part of the
information, with the goal of making decisions quickly, frugally” (p.
454) than more intricate strategies (Gigerenzer and Gaissmaier, 2011).
Heuristic processing involves retrieving task relevant rules or “heur-
istics” stored in memory. Heuristics are learned knowledge structures
(e.g., norms, established procedures, rules of thumb; Chaiken et al.,
1989). In comparison, systematic processing involves critical ex-
amination of information pertinent to decision making (Chen et al.,
1999). Systematic processing is an in-depth examination of the referent
or persuasive message. The two processes can occur separately or si-
multaneously, depending on the situation.

One of the key tenets of the HSM is that when perceivers are pro-
cessing information, they are interested in efficiency, looking to exert
minimal effort in processing (Chen and Chaiken, 1999). Heuristic pro-
cessing is efficient in cognitive effort and time, but typically at the
expense of accuracy (Chaiken, 1980). In contrast, systematic processing
requires more cognitive effort and time, but the decision rendered is
more accurate (Chen et al., 1999). However, processing efficiency is not

183

Applied Ergonomics 70 (2018) 182-193

the only requirement for reaching a decision. The sufficiency principle
states a perceiver has an actual level of confidence and a desired level of
confidence, and actual confidence must be higher than desired con-
fidence for a decision to be reached (Chen et al., 1999). The sufficiency
threshold is when the level of actual confidence will satisfy the motives
the perceiver is trying to meet. If the sufficiency threshold is met, the
perceiver discontinues processing. If the threshold is not met, the per-
ceiver will continue processing. The sufficiency threshold is not static,
but can change given the motivation of the perceiver. Of the three
motivations described by the HSM (Chen et al., 1999), accuracy moti-
vation is the most relevant to programmers. In the context of pro-
gramming, accuracy is key as ignoring minor issues may lead even a
compiled program to fail execution tests or introduce security risks into
a system. Accuracy motivation is the “open-minded and evenhanded
treatment” of task-relevant information (Chen et al., 1999, p. 45). When
accuracy motivation is low, the perceiver may utilize heuristic pro-
cessing towards reaching a lower sufficiency threshold. In contrast, if
accuracy motivation or cognitive resources are high, the perceiver may
engage in systematic processing towards reaching a higher sufficiency
threshold.

Although the HSM was developed to assess constructs in social
psychology, it can also be used to describe trust in code. Programmers
are exposed to various principles and accepted practices for writing
code such as readability, organized flow, and appropriate comments
(Gaddis, 2016). These practices serve as cues for programmers to use
when evaluating a piece of code they did not write. Specifically, these
practices facilitate heuristic processing, and such processing can be
leveraged when programmers read code. Code commonly referred to as
“spaghetti code” does not follow these suggested practices, either from
poor initial writing or from being changed by several programmers. We
propose programmers use these cognitive heuristics initially to de-
termine if the code is worth further evaluation. A recent cognitive task
analysis (Alarcon et al., 2017b) identified three factors that influence
trust in computer code: reputation, performance, and transparency.
Reputation was defined as trustworthiness cues based on information
provided outside the code, such as source, number of reviews, and
number of users of the code. Performance was defined as the capability
of the code to meet the necessities of the project. Transparency was
defined as the perceived comprehensiveness of the code from viewing
it. The focus of the current study is on transparency, specifically code
commenting. Transparency, through organized and readable code in a
well thought out architecture, should evoke heuristic processing
leading to trust and reuse. Comments help to facilitate this heuristic
processing.

1.4. Commenting

Introductory texts on programming often mention comments as an
important aspect of the code (Gaddis, 2016; Wang, 2006). Commenting
is a description of the code that is not part of the functionality of the
code, but is placed in the code file. Thus, comments do not directly
engage with the functionality of a program. From here on, we use
“comments” to refer to the descriptions of the code and “instructions”
to refer to the functional code, reserving “code” to refer to the combi-
nation of instructions and comments as the whole program. Comments
can act as headers to describe the overall functional expectations of
code (Johnfx, 2011). They can also decompose the instructions into
logical segments (“Comment,” n.d.), generally highlighting where
complex features may be present for easier inspection, integration, and
maintenance, which may include alterations to the code given a change
in domain, environment, or platform. When performing code reviews,
between 20 and 35% of reviewers request additional documentation,
including adequate commenting (Méntyl4d and Lassenius, 2009; Beller
et al., 2014). Code that requires additional documentation often ap-
pears to reviewers to have more defects (Porter et al., 1998;
Thongtanunam et al., 2015), suggesting that well-commented code



Download English Version:

https://daneshyari.com/en/article/6947610

Download Persian Version:

https://daneshyari.com/article/6947610

Daneshyari.com


https://daneshyari.com/en/article/6947610
https://daneshyari.com/article/6947610
https://daneshyari.com

