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a b s t r a c t

This paper provides algorithms for the optimization of autonomous hybrid systems based on the geomet-
rical properties of switching manifolds. By employing the notion of geodesic curves on switching mani-
folds, the Hybrid Maximum Principle (HMP) algorithm introduced in Shaikh and Caines (2007) is
extended to the so-called gradient geodesic and Newton geodesic algorithms. The convergence analysis
for the algorithms is based upon the Lasalle Invariance Principle and simulation results illustrate their
efficacy.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of hybrid systems optimal control (HSOC) has been
studied and analyzed in many papers (see for instance Bengea &
DeCarlo, 2005; Branicky, Borkar, & Mitter, 1998; Clarke & Vinter,
1989a, 1989b; Dmitruk & Kaganovich, 2008; Garavello & Piccoli,
2005; Grammel, 1999; Reidinger, Iung, & Krutz, 1999; Shaikh &
Caines, 2007; Sussmann, 1999; Xu & Antsaklis, 2004). In particular,
(Azhmyakov, Attia, & Raisch, 2008; Garavello & Piccoli, 2005;
Shaikh & Caines, 2007; Sussmann, 1999) present an extension of
the Maximum Principle to hybrid systems and (Shaikh & Caines,
2007) presents an iterative algorithm which is based upon the
Hybrid Maximum Principle (HMP) necessary conditions for opti-
mality. The HMP algorithm, presented in Shaikh and Caines
(2007) for both autonomous and controlled switchings, is based
upon a gradient search method for finding optimal switching states
and times on switching manifolds. This paper is concerned with
the optimal control problem for autonomous hybrid systems in
terms of the switching states on switching manifolds and their
associated switching times.

Following the approach introduced in Taringoo and Caines
(2010, 2009), we apply Riemannian geometric methods (see Alva-

rez, Bolte, & Munier, 2004; Gabay, 1982; Mahony & Manton, 2008;
Smith, 1994; Yang, 2007) based upon the generalization of steepest
descent methods in Euclidean spaces in Gabay (1982) and
Luenberger (1972). In contrast to the constrained optimization
methods of Luenberger (1972), Mayne and Polak (1976) and Polak
and Mayne (1976), a key feature of the formulation in Taringoo and
Caines (2010, 2009) is that the iterative steps of the optimization
algorithms occur within the (manifold) constraint subspaces.

In Section 2 optimal hybrid systems are introduced and Sec-
tion 3 deals with the analysis of the Hybrid Maximum Principle
algorithm. In Sections 4 and 5, specifically the HMP algorithm
is generalized to the so-called gradient geodesic algorithm by
employing the notion of geodesic curves on switching manifolds
together with the methods introduced in Gabay (1982), Luenber-
ger (1972), Yang (2007). The convergence analysis for the
proposed algorithm is based on the Lasalle Invariance Principle
(La Salle, 1976). In Section 6 in order to further improve the
convergence rate, the so-called Newton geodesic version of the
gradient geodesic algorithm is formulated in the local coordinate
system of the switching state. Again the Lasalle Invariance
Principle provides a proof of convergence for the Newton geode-
sic method. Simulation results show a significant improvement in
terms of convergence rate and stability compared with the HMP
algorithm.

2. Hybrid systems

The standard hybrid systems framework (Branicky et al., 1998;
Shaikh & Caines, 2007; Sussmann, 1999) is as follows:
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Definition 1. A hybrid system is a six tuple

H :¼ fH ¼ Q � Rnþ1;CA; I ¼ R� U; F;Mg ð2:1Þ
satisfying:

A0: Q = {1,2,3, . . . , jQj} is the finite set of discrete states.
H is the hybrid state space of H.
C: H � R ? Q is the time independent (partially defined)

discrete transition map.
A: Q ? 2Q is the set valued function for which for a state q 2 Q all

and only discrete controlled transitions in to the q dependent
subset A(q) � Q are allowed under C.

R ¼ Ru _[Rc _[fidg is a finite set of distinct autonomous (i.e.
uncontrolled) and controlled discrete event transition labels
extended with the identity element {id} such that for i 2 Q,ri, j 2R
only if j 2 A(i).

U � Ru is the set of admissible input control values, where U is an
open bounded set in Ru. The set of admissible input control functions
is U :¼ U U; L1½0; T�Þð Þ, the set of all bounded measurable functions
on some interval ½0; T�Þ, T⁄ 61, taking values in U.

I := R � U is the set of system input values.
F is the indexed collection of vector fields {fj}j2Q such that fj:

Rn+1 � U ? Rn+1 is a uniform Lipschitz vector field assigned to each
location.

We assume there exists Kf <1 such that
maxj2Qsupu2Ukfj(0,u)k 6 Kf, u 2 U, j 2 Q.

A switching manifold or guard mp, q is the union (over k) of a set
of switching manifold components mk

p;q ¼
S

ki ;1
6 i 6 nðkÞ ~mki

p;q; ~mki
p;q 2M, where M :¼ ~mk

c : c 2 Q � Q ; k 2 Zþ
n o

is a collection of time independent manifold subcomponents such
that for any ordered pair c ¼ ðp; qÞ; ~mk

c is a smooth, i.e. C1,
codimension 1 submanifold of Rn+1, possibly with boundary @ ~mk

c.
By abuse of notation, in the case of embedded submanifolds (in
Rn+1), we describe the manifold subcomponents locally by
~mk

c ¼ x : ~mk
cðxÞ ¼ 0

n o
.

In this paper it is assumed that:

(i) x 2 ~mki
c is such that x 2 ~mki

c
T

~m
kj
c ; ki – kj; if and only if

x 2 @ ~mki
c
T
@ ~m

kj
c .

(ii) If @ ~mki
c
T
@ ~m

kj
c – ø then @ ~mki

c
T
@ ~m

kj
c is a pieces wise smooth

codimention 2 submanifold of Rn+1 (possibly with
boundary).

(iii) For all c 2 Q � Q, the family of switching manifolds subcom-
ponents intersections are assumed to be locally finite. h

It should be noted that if ~mk
cð:Þ 2 CaðRnþ1Þ, the Implicit Function

Theorem implies that the zero level set of ~mk
cðxÞ, i.e.

x 2 Rnþ1 s:t: x 2 ~mk�1

c ð0Þ, is locally given by ðy; m̂ðyÞÞ; y 2 Rn,
where mk

cðxÞ and m̂ both have the same degree of regularity a,
(Lee, 2002). In this paper the analysis will be assumed to be re-
stricted to a single manifold subcomponent which is denoted by M.

A1: The initial state h0:=(x(t0),q0) 2 H is such that mq0qj
ðx0Þ – 0

for all qj 2 Q. It is assumed that for all p, q, whenever a trajectory
governed by the controlled vector field fp meets any given guard
manifold mp, q transversally, there is an autonomous switching to
the controlled vector field fq, also transversal to mp, q, otherwise a
continuation of the system trajectory is not defined.

Definition 2. A hybrid system input is a triple I := (s,r,u) defined on
a half open interval ½t0; TÞ; T 6 1, where u 2 U and (s,r) is a
hybrid switching sequence (s, r) = ((t0,r0), (t1,r1), (t2,r2), . . .), t0 < t1,
. . ., of pairs of switching times and discrete input events, r0 = id,
ri 2 R, i P 1, where r is called a location sequence. The corre-
sponding hybrid state trajectory is a triple (s,q,x) consisting of s, an
associated sequence of discrete states q = (q0,q1,q2, . . .), and a
sequence xð�Þ ¼ ðxq0

ð�Þ; xq1
ð�Þ; xq2

ð�Þ; . . .Þ of absolutely continuous
functions xqj

: ½tj; tjþ1
�
! Rnþ1. h

Let {lj}j2Q, lj 2 Ck(Rn+1 � U;R+), k P 1, be a family of loss functions

and h 2 Ck(Rn+1;R+), k P 1, a terminal cost satisfying the following

hypothesis:
A2: There exist Kl <1 and 1 6 c <1 such that

jlj(x,u)j 6 Kl(1 + kxkc), x 2 Rn+1, u 2 U, j 2 Q, and similarly for h(.).
Consider the initial time t0, final time tf <1, initial hybrid state

h0 = (q0,x0), and L <1. Let SL = ((t0,r0), (t1,r1), . . ., (tL,rL)) be a hy-
brid switching sequence and let IL :¼ ðSL;uÞ;u 2 U , be a hybrid in-
put trajectory subject to A0, A1, where L 6 L <1; is the
number of switchings. Subject to A2, define the hybrid cost function
as

Jðt0; tf ;h0; IL;UÞ :¼
XL

i¼0

Z tiþ1

ti

lqi
ðxqi
ðsÞ;uðsÞÞ þ hðxqL

ðtf ÞÞ: ð2:2Þ

The continuous dynamics of the hybrid system are specified as
follows:

_xqi
ðtÞ ¼ fqi

ðxqi
ðtÞ;uðtÞÞ; a:e:t 2 ½ti; tiþ1Þ;

uðtÞ 2 U � Ru;uð:Þ 2 L1ðUÞ; h0 ¼ ðq0; x0Þ; i ¼ 0;1; . . . ; L;

xqiþ1
ðtiþ1Þ ¼ limt!tiþ1

xqi
ðtÞ; tLþ1 ¼ tf <1: ð2:3Þ

It should be noted that, in general, different controls result in differ-
ent sequence of dynamics and numbers (L) of switchings (Shaikh &
Caines, 2007). In this paper it is assumed that the minimization of
(2.2) is performed in a class of control functions, U , which generate
a given aprior sequence of discrete transition events ri, i = 1, . . . , L.
In addition it is assumed that all optimal switching states corre-
sponding to the minimization of the cost defined in (2.2) lie in
the interior of switching manifolds subcomponents.

The following theorem gives the Hybrid Maximum Principle in
the extended class of the cases treated in Shaikh and Caines (2007),
specifically the autonomous switchings case is extended to the
time varying guards case. It is shown that the discontinuity of
the Hamiltonian functions and adjoint variables at the optimal
switching state and switching time give important information
about the geometry of the switching manifold M at switching
states.

Theorem 1. Consider a hybrid system satisfying the assumptions A0–
A2 above and define

Hqðx;r;u; kÞ ¼ kT frðqÞðx;uÞ þ lrðqÞðx;uÞ; k 2 Rnþ1; u 2 U; q 2 Q :

Assume that IL contains only autonomous switchings and let

Joðt0; tf ; h0;UÞ ¼ inf IL
Jðt0; tf ;h0; IL;UÞ

be the infimized cost function with infimizing control Io
L and trajectory

(xo,qo) which are both assumed to exist. Let Io
L have L autonomous

switchings and let t1, t2, . . ., tL, denote the switching times along the
optimal trajectory.

Finally, assume that almost everywhere along an optimal trajec-
tory the continuous state x satisfies the controllability condition given
in Shaikh and Caines (2007). Then:

(i) There exists a piecewise absolutely continuous adjoint process
satisfying

_ko
j ¼ �

@Hj

@x
ðxo;ro; k;uoÞ; uo

t 2 U a:e:; t 2 ðtj; tjþ1Þ:

(ii) At the switching times the adjoint process and Hamiltonain
function satisfy

kj t�j
� �

¼ kjþ1 tþj
� �

þ pjrxmj;jþ1ðxðtjÞ; tjÞ; 1 6 j 6 L; ð2:4Þ

Hj t�j
� �

¼ Hjþ1 tþj
� �

� pjrtmj;jþ1ðxðtjÞ; tjÞ; 1 6 j 6 L: ð2:5Þ
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