
Information and Software Technology 76 (2016) 65–80

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

B-Refactoring: Automatic test code refactoring to improve dynamic

analysis

Jifeng Xuan

a , ∗, Benoit Cornu

b , c , Matias Martinez

b , c , Benoit Baudry

c , Lionel Seinturier b , c ,
Martin Monperrus b , c

a State Key Lab of Software Engineering, Wuhan University, China
b University of Lille, France
c INRIA, France

a r t i c l e i n f o

Article history:

Received 28 May 2015

Revised 6 April 2016

Accepted 28 April 2016

Available online 29 April 2016

a b s t r a c t

Context: Developers design test suites to verify that software meets its expected behaviors. Many dy-

namic analysis techniques are performed on the exploitation of execution traces from test cases. In prac-

tice, one test case may imply various behaviors. However, the execution of a test case only yields one

trace, which can hide the others.

Objective: In this article, we propose a new technique of test code refactoring, called B-Refactoring. The

idea behind B-Refactoring is to split a test case into small test fragments, which cover a simpler part of

the control flow to provide better support for dynamic analysis.

Method: For a given dynamic analysis technique, B-Refactoring monitors the execution of test cases and

constructs small test cases without loss of the testability. We apply B-Refactoring to assist two existing

analysis tasks: automatic repair of if -condition bugs and automatic analysis of exception contracts.

Results: Experimental results show that B-Refactoring can effectively im prove the execution traces of the

test suite. Real-world bugs that could not be previously fixed with the original test suites are fixed after

applying B-Refactoring; meanwhile, exception contracts are better verified via applying B-Refactoring to

original test suites.

Conclusions: We conclude that applying B-Refactoring improves the execution traces of test cases for

dynamic analysis. This improvement can enhance existing dynamic analysis tasks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Developers design and write test suites to automatically verify

that software meets its expected behaviors. For instance, in regres-

sion testing, the role of a test suite is to catch new bugs – the

regressions – after changes [40] . Test suites are used in a wide

range of dynamic analysis techniques: in fault localization, a test

suite is executed for inferring the location of bugs by reasoning on

code coverage [19] ; in invariant discovery, input points in a test

suite are used to infer likely program invariants [10] ; in software

repair, a test suite is employed to verify the behavior of synthe-

sized patches [23] . Many dynamic analysis techniques are based

on the exploitation of execution traces obtained by each test case

[5,10,40] .

∗ Corresponding author. Tel.: +8618674053457.

E-mail address: jxuan@whu.edu.cn (J. Xuan).

Different types of dynamic analysis techniques require different

types of traces. The accuracy of dynamic analysis depends on the

structure of those traces, such as length, diversity, redundancy, etc.

For example, several traces that cover the same paths with differ-

ent input values are very useful for discovering program invari-

ants [10] ; fault localization benefits from traces that cover differ-

ent execution paths [5] and that are triggered by assertions in dif-

ferent test cases [54] . However, in practice, one manually-written

test case results in one single trace during test suite execution;

test suite execution traces can be optimal with respect to test suite

comprehension (from the human viewpoint by authors of the test

suite) but might be suboptimal with respect to other criteria (from

the viewpoint of dynamic analysis techniques).

Test code refactoring is a family of methods, which improve

test code via program transformation without changing behaviors

of the test code [49] . In this article, we propose a new kind of test

code refactoring, which focuses on the design of test cases, directly

for improving dynamic analysis techniques. Instead of having a

http://dx.doi.org/10.1016/j.infsof.2016.04.016

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.04.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.04.016&domain=pdf
mailto:jxuan@whu.edu.cn
http://dx.doi.org/10.1016/j.infsof.2016.04.016

66 J. Xuan et al. / Information and Software Technology 76 (2016) 65–80

single test suite used for many analysis tasks, our hypothesis is that

a system can automatically optimize the design of a test suite with

respect to the requirements of a given dynamic analysis technique .

For instance, given an original test suite, developers can have an

optimized version with respect to fault localization as well as an-

other optimized version with respect to automatic software repair.

This optimization can be made on demand for a specific type of

dynamic analysis. The optimized test suite is used as the input of

dynamic analysis without manual checking by developers.

In this paper, we propose a novel automated test code refac-

toring system dedicated to dynamic analysis, called B-Refactoring, 1

detects and splits impure test cases. In our work, an impure test

case is a test case, which executes an unprocessable path in one

dynamic analysis technique. The idea behind B-Refactoring is to

split a test case into small “test fragments”, where each fragment

is a completely valid test case and covers a simple part of the con-

trol flow ; test fragments after splitting provide better support for

dynamic analysis. A purified test suite after applying B-Refactoring

does not change the test behaviors of the original one: it triggers

exactly the same set of behaviors as the original test suite and de-

tects exactly the same bugs. However, it produces a different set of

execution traces. This set of traces suits better for the targeted dy-

namic program analysis. Note that our definition of purity is spe-

cific to test cases and is completely different from the one used in

the programming language literature (e.g., [50]).

A purified test suite after applying B-Refactoring can be em-

ployed to temporarily replace the original test suite in a given

dynamic analysis technique. Based on such replacement, perfor-

mance of dynamic analysis can be enhanced. To evaluate our

approach B-Refactoring, we consider two dynamic analysis tech-

niques, one in the domain of automatic software repair [9,52] and

the other in the context of dynamic verification of exception con-

tracts [8] . We briefly present the case of software repair here and

present in details the dynamic verification of exception contracts

in Section 5.2.2 . For software repair, we consider Nopol [52] , an

automatic repair system for bugs in if conditions. Nopol employs

a dynamic analysis technique that is sensitive to the design of test

suites. The efficiency of Nopol depends on whether the same test

case executes both then and else branches of an if . This forms

a refactoring criterion that is given as input to B-Refactoring. In our

dataset, we show that B-Refactoring improves the test execution on

if s and unlocks new bugs which are able to be fixed by purified test

suites .

Prior work . Our work [54] shows that traces by an original test

suite are suboptimal with respect to fault localization . The origi-

nal test suite is updated to enhance the usage of assertions in fault

localization. In the current article, the goal and technique are dif-

ferent, B-Refactoring refactors the whole test suite according to a

given dynamic analysis technique . Section 6.2 explain the differences

between the proposed technique in this article and our prior work.

This article makes the following major contributions:

• We formulate the problem of automatic test code refactoring

for dynamic analysis. The concept of pure and impure test cases

is generalized to any type of program element.
• We propose B-Refactoring, an approach to automatically refac-

toring test code according to a specific criterion. This approach

detects and refactors impure test cases based on analyzing exe-

cution traces. The test suite after refactoring consists of smaller

test cases that do not reduce the potential of bug detection.
• We apply B-Refactoring to assist two existing dynamic analysis

tasks from the literature: automatic repair of if -condition bugs

1 B-Refactoring is short for Banana-Refactoring. We name our approach with Ba-

nana because we split a test case as splitting a banana in the ice cream named

Banana Split.

and automatic analysis of exception contracts. Three real-world

bugs that could not be fixed with original test suites are em-

pirically evaluated after B-Refactoring; exception contracts are

better verified by applying B-Refactoring to original test suites.

The remainder of this article is organized as follows. In

Section 2 , we introduce the background and motivation of B-

Refactoring. In Section 3 , we define the problem of refactoring test

code for dynamic analysis and propose our approach B-Refactoring.

In Section 4.2 , we evaluate our approach on five open-source

projects; in Section 5 , we apply the approach to automatic re-

pair and exception contract analysis. Section 6 details discussions

and threats to the validity. Section 7 lists the related work and

Section 8 concludes our work. Section Appendix describes two case

studies of repairing real-world bugs.

2. Background and motivation

In this section, we present one scenario where test code refac-

toring improves the automatic repair of if -condition bugs. How-

ever, test code refactoring is a generic concept and can be applied

prior to other dynamic analysis techniques beyond software repair.

Another application scenario in the realm of exception handling

can be found in Section 5.2.2 .

2.1. Real-world example in automatic repair: Apache commons math

141473

In test suite based repair, a repair method generates a patch

for potentially buggy statements according to a given test suite

[[23,33,52] . The research community of test suite based repair has

developed fruitful results, such as GenProg by Le Goues et al. [23] ,

Par by Kim et al. [21] , and SemFix by Nguyen et al. [33] . In this ar-

ticle, we automatically refactor the test suite to improve the ability

of constructing a patch.

We start this section with a real-world bug in open source

project, Apache Commons Math, to illustrate the motivation of our

work. Apache Commons Math is a Java library of mathematics and

statistics components. 2

Fig. 1 shows a code snippet of this project. It consists of

a bug in an if and two related test cases. 3 The program in

Fig. 1 a is designed to calculate the factorial, including two meth-

ods: factorialDouble for the factorial of a real number and

factorialLog for calculating the natural logarithm of the fac-

torial. The bug, at Line 11, is that the if condition n < = 0 should

actually be n < 0 .
Fig. 1 b displays two test cases that execute the buggy if con-

dition: a passing one and a failing one. The failing test case detects

that a bug exists in the program while the passing test case vali-

dates the existing correct behavior. To generate a patch, a repair

method needs to analyze the executed branches of an if by each

test case. Note that an if statement with only a then branch,

such as Lines 11 to 14 in Fig. 1 a, can be viewed as an if with

a then branch and an empty else branch.

As shown in Fig. 1 b, we can observe that test code before Line

14 in test case testFactorial executes the then branch while

test code after Line 15 executes the else branch. The fact that

a single test case executes several branches is a problem for cer-

tain automatic repair algorithms such as Nopol [52] described in

Section 2.2 .

2 Apache Commons Math, http://commons.apache.org/math/ .
3 See https://fisheye6.atlassian.com/changelog/commons?cs=141473 .

http://commons.apache.org/math/
https://fisheye6.atlassian.com/changelog/commons?cs=141473

Download English Version:

https://daneshyari.com/en/article/6947896

Download Persian Version:

https://daneshyari.com/article/6947896

Daneshyari.com

https://daneshyari.com/en/article/6947896
https://daneshyari.com/article/6947896
https://daneshyari.com

