
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Debugging and maintaining pragmatically reused test suites

Soha Makadya, Robert J. Walker⁎,b

a Computer Science Department, Faculty of Computers and Information, Cairo University, Giza, Egypt
bDepartment of Computer Science, University of Calgary, Calgary, Canada

A R T I C L E I N F O

Keywords:
Pragmatic software reuse
Test suite reuse
Error detection
Error repair
Debugging
Maintenance
Semi-automatic
Lightweight tool

A B S T R A C T

Context: Pragmatic software reuse is a common activity in industry, involving the reuse of software artifacts not
designed to anticipate that reuse.
Objective: There are two key issues in such tasks that have not been previously explored. (1) Subtle bugs can be
inserted due to mistakes on the part of a developer performing the pragmatic reuse. The reused code, integrated
in the target system, should be (re-)validated there. But it is not clear what validation strategies would be
employed by professional developers, and which of these strategies would be most effective to detect and to
repair these inserted bugs. (2) Although semi-automated reuse of the associated test suite has been previously
proposed as a strategy to detect such inserted bugs, it is unknown if the reused test suite would be maintainable
in practice and how its maintenance characteristics would compare against alternative strategies.
Method: We present two empirical studies with industrial developers to address these open issues.
Results: We find that industrial developers use a few strategies including test suite reuse, but that test suite reuse
is more reliably effective at discovering and repairing bugs inserted during pragmatic reuse. We also find that, in
general, semi-automatically reused test suites are slightly more maintainable than manually reused test suites, in
pragmatic reuse scenarios; specific situations can vary wildly however. Participants suggested specific extensions
to tool support for semi-automated reuse of test suites.
Conclusions: While various validation strategies are employed by industrial developers in the context of prag-
matic reuse, none is as reliable and effective as test case reuse at discovering and repairing bugs inserted during
pragmatic reuse. Despite the fact that semi-automatically reused test cases contain non-trivial adaptive code,
their maintainability is equivalent to or exceeds that of manually reused test suites. The approach could be
improved, however, by adopting the suggestions of our participants to increase usability.

1. Introduction

Software reuse encourages the development of new software sys-
tems by leveraging existing artifacts. Reuse has long been promoted for
its potential to increase the productivity of software developers, to re-
duce development time, and to decrease defect density [5,7,55,72].
Most research into software reuse has focused on pre-planned ap-
proaches, such as object-oriented inheritance [13,39], software com-
ponents [55,74], and software product lines [45,63]. Unfortunately,
pre-planned reuse has drawbacks: (1) prediction is difficult as to what
artifacts should be built for reuse [77]; (2) it is too expensive to build all
artifacts for reuse [4,11]; and (3) artifacts cannot be reused intact in
arbitrary contexts because of their embedded assumptions [25,49].

Instead, software developers sometimes find themselves in

situations where existing artifacts do not quite meet their needs. Rather
than reimplementing the functionality of interest or refactoring the
software where the functionality exists, developers often perform an ad
hoc but pragmatic process of copy-and-modify on portions of the ex-
isting source code [31].1 Pragmatic reuse is known to be an industrially
common practice [6,11,33,36,40,44,68,78,80], and it can be the dis-
ciplined action of a developer who has carefully weighed the risks in-
volved [31,80]. Nevertheless, pragmatic reuse could cause subtle bugs
when constraints that are met within the originating system are vio-
lated in the target system [33].

To prevent silent introduction of bugs during pragmatic reuse, the
developer has three known options: (1) use automated test generation
techniques [e.g., 12, [22,28,61], 83]; (2) create new automated test
suites (e.g., via JUnit or other xUnit family members2 [56]); or

https://doi.org/10.1016/j.infsof.2018.05.001
Received 31 March 2017; Received in revised form 20 February 2018; Accepted 5 May 2018

⁎ Corresponding author.
E-mail addresses: s.makady@fci-cu.edu.eg (S. Makady), walker@ucalgary.ca, walker@lsmr.org (R.J. Walker).

1 Pragmatic reuse has been known by a variety of other terms: copy-and-modify reuse [46], code scavenging [44], ad hoc reuse [64], software salvaging [9], opportunistic reuse [68],
unanticipated reuse [30,76], software transplantation [29], and clone-and-own [17], although some subtle differences exist about the context of application.

2 https://www.martinfowler.com/bliki/Xunit.html [accessed 10 November 2017].

Information and Software Technology 102 (2018) 6–29

Available online 19 May 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.05.001
https://doi.org/10.1016/j.infsof.2018.05.001
mailto:s.makady@fci-cu.edu.eg
mailto:walker@ucalgary.ca
mailto:walker@lsmr.org
https://www.martinfowler.com/bliki/Xunit.html
https://doi.org/10.1016/j.infsof.2018.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.05.001&domain=pdf


(3) pragmatically reuse and adapt test suites from the originating
system. Note that automated test generation techniques require de-
tailed knowledge of expected behavior of the system (as opposed to
actual behavior), by means of: detailed formal specifications (which are
unlikely to exist in industrial settings); manually supplied program in-
variants (which require expertise with the reused code that developers
performing pragmatic reuse tasks lack [8,31,43,50]); or feedback about
whether actual behavior is correct or not (which again requires ex-
pertise with the reused code). Furthermore, new automated test suites
are expensive to create manually [58,75] and the developer’s super-
ficial understanding of the reused code would cause such new test suites
to be of questionable value. Apparently, reusing and adapting the ori-
ginal test suite is the best option. Currently, we have no evidence about
two questions: (RQ1) What strategies would developers use to discover
and repair errors inserted during pragmatic reuse? (RQ2) What strate-
gies are most effective to discover and repair errors inserted during
pragmatic reuse?

We conduct a semi-controlled experiment to address these two
questions. We discover a set of alternative approaches to validate
pragmatic reuse tasks, and we compare the merits of developers’ chosen
approaches against reuse and adaptation of the original test suite. Our
results show that, while developers do attempt a variety of other stra-
tegies, identification and repair of errors is more successful when test
suite adaptation and reuse is pursued.

Given the value of reuse and adaptation of the original test suite, we
previously considered how this process can be automated [51,52],
addressing the problem of leveraging the original test suite to validate
pragmatically reused functionality. We semi-automatically reuse the
portions of a test suite that are associated with the reused functionality.
This permits faults to be detected that were introduced during prag-
matic reuse, minimizing false alarms. The approach is reified in a tool
called Skipper that uses a record-and-replay (R&R) technique to par-
tially transform the originating system’s unit tests to only exercise the
reused code, placing them in the target system: runtime information is
serialized during an execution of the test suite on the originating
system, and deserialized for use within the execution of the transformed
test suite on the target system.

Although we demonstrated that Skipper was more effective than an
alternative manual reuse approach [52], two additional open questions
remain. (RQ3) Are Skipper’s R&R tests harder to maintain than
manually written tests? (RQ4) How would developers validate prag-
matically reused code in the absence of R&R tests?

To address these questions, we performed a case study into the
maintainability of Skipper’s R&R test suites in the presence of various
disruptive changes caused by the evolution of reused source code. The
developers maintained manually-written or Skipper R&R tests, after we
had applied various test-breaking changes to different portions of some
reused source code; the changes were mostly behavior-modifying, re-
quiring non-trivial understanding of the reused code to repair broken
tests. We then interviewed the developers about the pros and cons of
both approaches, and how they would test such reused code in the
absence of Skipper. Our results indicate that developers can successfully
maintain R&R tests; they would struggle with the same kinds of missing
information as in manually created tests. Furthermore, developers see
R&R tests as appropriate where creating manual tests is too difficult,
particularly for complex or unfamiliar reused functionality.

The paper is structured as follows. Section 2 describes a running
example in which a developer must validate pragmatically reused code.
Section 3 details a semi-controlled experiment into validation strategies
employed by professional developers during pragmatic reuse, addres-
sing RQ1 and RQ2. Section 4 overviews background of our previous
work on Skipper’s R&R test suites. Section 5 continues our running
example, to demonstrate potential problems of maintaining Skipper’s
R&R test suites. Section 6 describes our case study and interviews into
the maintainability of Skipper R&R test suites in the presence of various
disruptive changes, addressing RQ3 and RQ4. Section 7 discusses

remaining issues. Section 8 describes related work.

2. Motivation: validating pragmatically reused features

Consider a scenario in which a developer is building a new appli-
cation, which we refer to as “YouTube Recommender”, to recommend
musical videos to users based on their musical taste. For instance, if a
user prefers to listen to pop songs specifically, that application would
recommend to him any YouTube videos of songs from that same genre.
The developer happens to know of aTunes [18,19], a system for
managing and playing audio files. Among its various features, aTunes
provides the related artists feature, similar to the one desired. When an
aTunes user plays a song for some artist, aTunes recommends a set of
related artists to which this user might also want to listen. He decides to
reuse that feature within his new application.

2.1. Performing pragmatic reuse

The developer explores the source code of aTunes (the originating
system) to identify the starting point of the source code responsible for
the related artists feature. He settles on the public method
getSimilarArtists(), located in the LastFmService class.
Accordingly, he copies the source code for that method into his target
project, which results in dangling references to other classes and
methods. He proceeds to add and modify other relevant source code
elements from within aTunes, needed for the related artists feature to
work properly within his new context.

The developer copies a total of 22 source classes from the aTunes
project into the organization’s (new) target project, making various
modifications to the copied code to keep only those portions that serve
the related artists feature. For instance, the LastFMService class ori-
ginally included 2 inner classes, 20 fields, and 39 methods spanning
640 non-comment LOCs within aTunes. After closely exploring the
getSimilarArtists() method, the developer decides to keep all of
its source code (a small sample of this code is shown in Fig. 1), except
for one line performing some logging functionality that he is not in-
terested in. Within the target YouTube Recommender system, the re-
used class LastFMService includes only 18 fields and 3 methods,
spanning 116 non-comment LOCs.

2.2. Validating the pragmatically reused code

Within YouTube Recommender, the developer wants the related
artists feature to retain the same behavior it possessed within aTunes.
But he is unable to obtain the desired recommendations from it. After a
frustrating and lengthy debugging session, he determines that the
getSimilarArtists() always returns a blank list of recommenda-
tions, despite the requisite initialization having been performed cor-
rectly. Evidently, some error was introduced during the pragmatic reuse
of the feature.

The problem is rooted in the fact that the resource file ehcache-
lastfm.xml was missed during the pragmatic reuse of the related ar-
tists feature, thereby damaging its functionality. That resource file is
used to correctly initialize the lastFmCache field within the
LastFMService class (line 2 in Fig. 1). However, as that resource file
is not explicitly mentioned within the LastFMService class, the de-
veloper failed to copy it to the target system during the initial reuse, in
which he focused on investigating specifically the source code. This
error results from the developers in the reusing organization having
limited knowledge about the aTunes project’s structure and config-
uration.

Not knowing these details, the developer is unclear about what has
gone wrong. His manual debugging has not helped him to localize the
fault within the reused feature. He could leverage the wealth of
knowledge stored within aTunes system’s test suite, by also pragmati-
cally reusing the original, automated test suite for the related artists

S. Makady, R.J. Walker Information and Software Technology 102 (2018) 6–29

7



Download English Version:

https://daneshyari.com/en/article/6947994

Download Persian Version:

https://daneshyari.com/article/6947994

Daneshyari.com

https://daneshyari.com/en/article/6947994
https://daneshyari.com/article/6947994
https://daneshyari.com

