Information and Software Technology Xxx (XXXX) XXX—XXX

Contents lists available at ScienceDirect

IFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The GRADE taxonomy for supporting decision making asset selection in
software-intensive system development

Efi Papatheocharous™”, Krzysztof Wnuk®, Kai Petersen®, Séverine Sentilles®, Antonio Cicchetti®,
Tony Gorschek?, Syed Muhammad Ali Shah”
@ Blekinge Institute of Technology, Karlskrona, Sweden

P SICS Swedish ICT AB, Kista, Sweden
€ Mdlardalen University, Vdsterds, Sweden

ARTICLE INFO ABSTRACT

Keywords:

Software engineering
Decision-making
Taxonomy

Knowledge management

Context: The development of software-intensive systems includes many decisions involving various stakeholders
with often conflicting interests and viewpoints.

Objective: Decisions are rarely systematically documented and sporadically explored. This limits the opportunity
for learning and improving on important decisions made in the development of software-intensive systems.
Method: In this work, we enable support for the systematic documentation of decisions, improve their trace-
ability and contribute to potentially improved decision-making in strategic, tactical and operational contexts.
Results: We constructed a taxonomy for documentation supporting decision-making, called GRADE. GRADE was
developed in a research project that required composition of a common dedicated language to make feasible the
identification of new opportunities for better decision support and evaluation of multiple decision alternatives.
The use of the taxonomy has been validated through thirty three decision cases from industry.

Conclusion: This paper occupies this important yet greatly unexplored research gap by developing the GRADE
taxonomy that serves as a common vocabulary to describe and classify decision-making with respect to archi-

tectural assets.

1. Introduction

Software-intensive system development is a complex endeavor.
Since software-intensive systems continue to grow in size and com-
plexity [1], they often contain several components, sub-systems or
other assets. An asset is here defined as a software artifact developed or
obtained by a software development organisation that impacts software
value [2]. These assets can range from software functionality exposed
to the end-user (e.g., a navigation system in a vehicle) to software that
controls physical embedded assets (e.g., fuel injection control in vehicle
engines). A set of decisions need to be made on strategic, tactical and
operational levels [3] before each asset can be considered and in-
corporated.

These decisions usually have an impact on software architecture and
require the involvement of the software architects who make decisions
related to the selection of the right components, connections, and the
architectural style to be used [4]. Several authors focused on archi-
tectural decision-making, e.g. [4-9]. These decisions create architecture

* Corresponding author. Fax: +004646131021.

knowle.g. [5] that should be managed to support system development
and maintenance. However, architecture knowledge mainly concerns
technical consequences of selecting a specific asset and is just a subset
of the knowledge that is created and should be captured during soft-
ware-intensive system development [10]. Additional knowledge con-
cerns business: goals, roles other than architects, utilized decision
methods, system and software development process knowledge,
knowledge about assets considered but not selected and other en-
vironmental factors related to the decision. Only capturing this vibrant
picture of relevant aspects creates the necessary comprehensive view on
decision-making for software-intensive systems that can support the
challenges associated with their development [10].

Software-intensive systems are often large and composed of many
assets originating from various sources. Assets can be developed in-
ternally (within software organisations), purchased as software com-
ponents, obtained from Open Source Software (OSS) communities or
developed with the help of outsourcing. A recent literature review ex-
ploring factors that influence the selection of assets originating from in-

E-mail addresses: efi.papatheocharous@ri.se (E. Papatheocharous), krzysztof.wnuk@bth.se (K. Wnuk), kai.petersen@bth.se (K. Petersen), severine.sentilles@mdh.se (S. Sentilles),
antonio.cicchetti@mdh.se (A. Cicchetti), tony.gorschek@bth.se (T. Gorschek), syed.shah@sics.se (S.M.A. Shah).

https://doi.org/10.1016/j.infsof.2018.02.007

Received 9 August 2017; Received in revised form 25 November 2017; Accepted 20 February 2018

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Papatheocharous, E., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.02.007



http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.02.007
https://doi.org/10.1016/j.infsof.2018.02.007
mailto:efi.papatheocharous@ri.se
mailto:krzysztof.wnuk@bth.se
mailto:kai.petersen@bth.se
mailto:severine.sentilles@mdh.se
mailto:antonio.cicchetti@mdh.se
mailto:tony.gorschek@bth.se
mailto:syed.shah@sics.se
https://doi.org/10.1016/j.infsof.2018.02.007

E. Papatheocharous et al.

house, outsourced, components of the shelf (COTS), OSS, or services
highlights the lack of a systematic approach to decision documentation
[11] that can support learning and retrospective analysis. Moreover, the
review indicates that companies perform only partial analysis of pos-
sible options, mainly because they lack systematic analysis approaches.
The first steps towards creating systematic analysis approaches are 1) to
create a common vocabulary with a shared understanding of decision
components and contextual factors and 2) to provide a structured in-
strument for collecting decision-making evidence.

These two issues prompted the development of the GRADE tax-
onomy [12] that provides a structured instrument for collecting and
documenting decision-making evidence. This opens up for the potential
for retrospective learning and improved comprehension of decision
outcomes that can mitigate adverse effects of sub-optimal decision-
making on strategic, tactical and operational levels. To the best of the
authors’ knowledge, no other work supports this endeavor.

This paper presents the GRADE taxonomy version 1.0 and the steps
involved in its creation, refinement, and step-wise validation. This
paper extends our previous work [12] with the following aspects: 1) a
refined and validated GRADE taxonomy is presented, 2) the details
about the taxonomy construction process are presented, and 3) the
validation of GRADE is carried out and presented within a two-phase
validation study where additional viewpoints and challenges are iden-
tified.

This paper is structured as follows: Section 2 discusses related work,
Section 3 describes the research process, Section 4 analyses the GRADE
taxonomy elements, Section 5 validates GRADE via thirty-three in-
dustrial decision cases, Section 6 includes a discussion and the limita-
tions of this work and finally Section 7 concludes the work and sum-
marises future research.

2. Related work

The related work to GRADE has been divided into two areas: (i)
knowledge management and decision-making support (ii) documenta-
tion and taxonomies in developing software systems.

Knowledge management and structuring evidence to support ar-
chitectural decisions gain importance in software engineering [13]
since architecture is not isolated from decision-making and an architect
is “a decision maker instead of someone drawing boxes and lines” [5].
The reasons underlying architectural design decisions, which result in
corresponding software architecture, are gaining importance, even over
the architecture specification itself [14]. One of the reasons for this
increased emphasis is that software-intensive systems grow in size and
complexity and often are designed by several architects during their
development and maintenance phases which are also extended to long
periods of time. Capturing, storing and managing architecture knowl-
edge helps to minimize knowledge vaporisation and architectural drift
[5].

Several authors studied how practitioners make architectural deci-
sions, e.g. [4], suggested models for architectural decisions, e.g. [8], or
proposed ontologies for architectural decisions, e.g. [9]. A suitable
amount of solutions for storing architectural knowledge exists, and a
complete review of them is beyond the scope of this article. The in-
terested reader is referred to [5-8,15-17] for detailed surveys on the
subject. For this work, it is essential to remark that automated knowl-
edge reasoning is still scarcely supported because it typically requires a
preliminary encoding of knowle.g. [15]. The support of such an initial
encoding is the goal of ontologies and taxonomies efforts like the one
described throughout this paper. However, ontologies of architectural
decisions are often based on opinions rather than empirical evidence,
e.g. [9]. Moreover, architecture knowledge is a subset of knowledge
that should be captured during software-intensive system development.

Knowledge repositories are used in software engineering for a
variety of purposes [10], e.g., for system modeling [18], for recording
architectural decisions in the design of model and meta-data

Information and Software Technology xxx (xxxX) XXX—-XXX

repositories [19], and for tracing the originators of software and data
artifacts in a project [20]. These works usually aim to record results of
evaluations and decision processes rather than their rationale. In this
respect, Capilla et al. [21] discuss a solution to record architectural
decisions as linked to other factors involved, notably functional and
non-functional properties. Such knowledge is stored using links be-
tween artifacts, whose semantics are defined regarding a meta-model.

Documentation and taxonomies in software engineering aim to in-
crease common understanding between the different stakeholders and
to create traceability between decisions. As such, in [22] a doc-
umentation framework for architectural decisions is presented using the
conventions of ISO/IEC/IEEE 42010 [23] consolidating four different
viewpoints. The four viewpoints, Decision Detail, Decision Relation-
ship, Decision Chronology and Decision Stakeholder Involvement, sa-
tisfy several stakeholder concerns related to architecture decision
management. In [24] the ADDRA approach is presented, where archi-
tects can use for recovering architectural decisions made retro-
spectively. Only a limited number of studies combine explicit descrip-
tion of design decisions with architectural design. As such work, in [25]
a design map for recoding architectural decisions and a meta-model
focusing on the relationships between non-functional properties and
architectural styles are described.

Several related works support documentation in software en-
gineering by developing taxonomies, outside however the context of
architectural decision-making. These works are limited in only struc-
turing knowledge areas in software engineering and make explicit use
of the notion of taxonomies. Examples include the Guide to the
Software Engineering Body of Knowledge (SWEBOK) [26], which de-
scribes the software engineering discipline in a structured way, the
work of Glass et al. [27] which describes a taxonomy on software en-
gineering research, Blum [28] which describes development methods,
Smite et al. [29] which describes a taxonomy for global software en-
gineering and Unterkalmsteiner et al. [30] which describes a taxonomy
associating software requirements engineering and testing. Bayona-Ore
et al. [31] defined an approach for the construction and evaluation of
taxonomies. To the best of our knowledge, no taxonomy focuses on
supporting decision-making of asset selection in software-intensive
system development.

Based on the previous work, we have taken into account the fol-
lowing: 1) efforts in building taxonomies should be driven by clearly
defined goals (as recommended in [26,31]), 2) a systematic process
needs to be followed in the taxonomy construction (similar to [31]), 3)
taxonomies can be built bottom-up in cases where relationships are not
well understood (according to [30]), 4) experts should be involved in
the taxonomy construction process (as in [29]) and 5) taxonomies can
be validated against their purpose, either through classification based
on the literature [29], or through industrial case studies [30]. The
above points were used to define and refine the GRADE taxonomy
(introduced in [12]) and in this work, evaluated to effectively docu-
ment cases of various decision alternatives in the development of
software-intensive industrial systems.

3. Research process and methodology

The GRADE taxonomy was created following a three-phase process
and influenced by the design science methodology [32]. The taxonomy
is the main artifact developed in three phases: 1) problem identifica-
tion, 2) artifact design and 3) validation.

In the problem identification phase, we conducted a literature
survey (published in a separated publication [11]) to outline the chal-
lenges in systematic decision-making and the first set of requirements
that the taxonomy to be constructed should fulfill. We focused on the
factors that influence the decision to choose among different asset
origins and solutions for decision-making [11]. Using a snowball sam-
pling literature review method we listed 24 studies and 11 factors af-
fecting or influencing the decision to select an origin. The factors are



Download English Version:

https://daneshyari.com/en/article/6948012

Download Persian Version:

https://daneshyari.com/article/6948012

Daneshyari.com


https://daneshyari.com/en/article/6948012
https://daneshyari.com/article/6948012
https://daneshyari.com

