
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Supporting the evolution of event-driven service-oriented architectures
using change patterns

Simon Tragatschnig, Srdjan Stevanetic⁎, Uwe Zdun
Software Architecture Research Group, Faculty of Computer Science, University of Vienna, Vienna, Austria

A B S T R A C T

Context: The components of an event-driven service-oriented architecture (EDSOA) are composed in a highly
decoupled way, facilitating high flexibility, scalability and concurrency in SOA systems. Evolving an EDSOA is
challenging because the absence of explicit dependencies among constituent components makes understanding
and analysing the overall system composition difficult. The evolution of EDSOAs typically happens by per-
forming a series of primitive changes—which can be described formally as change primitives.
Objective: In this article, we present our change pattern based approach for managing the EDSOA evolution as a
novel design method supporting EDSOA evolution. The change patterns operate on a higher abstraction level
than change primitives.
Method: To evaluate our approach, we have compared both time and correctness of changes in a controlled
experiment comparing the understanding and performing of changes in EDSOAs. The experiment has been
conducted with 90 students of the Software Architecture course at the University of Vienna. We compare the
efficiency of 3 sets of change operations for modifying a given system architecture to obtain a desired archi-
tecture: a minimal set of 3 change patterns, an extended set of 5 change patterns, and a minimal set of 4 change
primitives.
Results: Our results show that change patterns based evolution requires significantly less time to capture a
similar level of correctness as the evolution based on change primitives, presuming that a certain level of
transformation complexity is required. Furthermore, we did not observe a significant difference in the cor-
rectness level nor in the time required to perform the changes using an extended pattern set compared to a
minimal set of patterns.
Conclusions: We clearly show the feasibility of our approach by developing a design method and tool support
using a model-driven tool chain consisting of 3 domain-specific languages and empirically evaluating the ap-
proach in a controlled experiment.

1. Introduction

In recent years, distributed event-driven architectures have become
widespread in their use in several domains such as real-time control
systems, stock market and fast trading, network intrusion detection,
sensor networks, healthcare monitoring, mobile and wearable com-
puting (see e.g. [20,26]). A main reason is that event-driven archi-
tectures provide solutions for developing distributed systems that fa-
cilitate high scalability, flexibility, and concurrency [20]. An event-
driven architecture typically comprises a number of computational or
data handling elements (i.e., components, actors) that communicate
with each other by sending and receiving events [20]. Each component
may independently perform a particular task, for instance, access a data
storage, dispense cash from a credit card, or interact with users.

Nowadays the components or actors in event-driven architectures are
typically services, leading to a combination of event-driven and service-
oriented architecture concepts, coined with the term event-driven ser-
vice-oriented architecture (EDSOA) [13,21]. More precisely, we use the
term to describe event-driven architectures that are used to realize
flexible service communication and orchestrations [13,23,50].

The communication style used in EDSOAs is based on implicit in-
vocations performed by publishing an event (or message) to an event
channel (also called event bus or message broker) instead of explicit
invocations where one component is directly called via a re-
ference [26]. As the exchange of events among the components is
performed through the event channel, every component is in principle
unaware of the others. This way a high degree of flexibility in the
system is supported.

https://doi.org/10.1016/j.infsof.2018.04.005
Received 9 November 2016; Received in revised form 31 March 2018; Accepted 13 April 2018

⁎ Corresponding author.
E-mail addresses: simon.tragatschnig@univie.ac.at (S. Tragatschnig), srdjan.stevanetic@univie.ac.at (S. Stevanetic), uwe.zdun@univie.ac.at (U. Zdun).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Published by Elsevier B.V.

Please cite this article as: Tragatschnig, S., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.04.005

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.04.005
https://doi.org/10.1016/j.infsof.2018.04.005
mailto:simon.tragatschnig@univie.ac.at
mailto:srdjan.stevanetic@univie.ac.at
mailto:uwe.zdun@univie.ac.at
https://doi.org/10.1016/j.infsof.2018.04.005


For example, the execution order of components can be changed
(e.g., re-routing or adding some components) or any component can be
replaced (e.g., with a bug-fixed or upgraded version) whilst the system
is running. Additionally, EDSOAs support high scalability since the
loosely coupled components can be executed concurrently and easily
placed on different hardware nodes or virtual machines. However, the
additional wanted degrees of flexibility, scalability, and concurrency
through loose coupling might also increase the difficulty and un-
certainty in understanding, maintaining and evolving these systems [8].

As requirements on software systems evolve over time, they have to
be constantly maintained and changed [18]. More than one quarter of
coding time is spent on implementing changes and investigating their
impact [16]. By analyzing evolution of software systems, Weber et al.
identify a set of change patterns that recur in many of existing software
systems [45]. These patterns are specific for process-aware information
systems (PAIS) where the execution of the software system is bound to a
process schema, a prescribed rigid description of the behavior flow, and
therefore, mostly cannot be changed during runtime or just slightly
deviated from the initial schema [30,34,42]. As a result, these ap-
proaches are not easily applicable for EDSOAs where components are
highly decoupled and the dependencies between components are sub-
ject to change at any time, even during the execution of the systems.
Nevertheless, these patterns provide a basis for describing changes of
the behavior in any information system.

To deal with the complexity and the large degree of flexibility of
EDSOAs, a set of change operations that enable modifications in the
system at different abstraction levels is proposed in our approach.
Those change operations include low-level primitives (change primi-
tives) for encapsulating the primitive change actions, such as adding or
removing an actor or event, and high-level patterns (change patterns),
that encompass a number of change primitives. An example of a change
pattern is replacing an actor that represents a service call. This re-
placement pattern encompasses ‘removing and adding an actor’ pri-
mitives as well as ‘removing and adding events’ primitives. The pro-
vided set of patterns significantly extend the change patterns that are
frequently occurring in most information systems [45] in order to deal
with the specifics of EDSOAs. Hence our first research question ad-
dressed in this article is:

Research Question 1 (RQ1): Can the concept of change patterns
(as defined for information systems by Weber et al. [45]) be used as a
foundation for a design method for the evolution of EDSOAs, reflecting
the specific changes required in EDSOAs?

In this article, we also investigate how the previously mentioned
change operations (change patterns and change primitives) influence
the process of performing changes or evolving an EDSOA. More pre-
cisely, we hypothesize a positive effect on the efficiency of performing
changes in an EDSOA model using the change patterns compared to
change primitive based changes. Hence, the second research question
we studied was:

Research Question 2 (RQ2): If RQ1 can be answered positively, is
there a significant positive influence on the efficiency of performing
changes in an EDSOA model using the change patterns compared to
change primitive based changes?

To study this research question, we conducted a controlled experi-
ment where we compared the efficiency of change patterns and change
primitives for modifying a given system architecture in order to obtain
a desired one. The participants of our study were 90 students of the
Software Architecture lecture at the University of Vienna. They were
divided into 3 groups, and each of them was asked to modify a given
system architecture (called the source architecture) using a given set of
change operations in order to obtain a desired architecture (called the
target architecture). For all groups the same 4 source/target pairs of
EDSOA architecture models were given. The first group was provided
with a set of 3 change patterns which also represents a minimal set of
change patterns needed to perform any change in the system. The
second group was provided with two additional patterns, to enable us

to study to which extent additional higher-level abstractions help.
Finally, the third group was provided with a set of 4 change primitives,
which also represents a minimal set of primitives required to perform
any change in the system. Our results show that, for the most complex
model studied and the case where all models are considered together
(the results for all studied models are summed up), the group with
change primitives required significantly more time to reach a similar
correctness level of pursued changes compared to the groups with
change patterns. The obtained results provide empirical evidence that
change patterns based evolution is generally more efficient than change
primitives based evolution of EDSOAs, presuming that a certain level of
transformation complexity is required. Moreover, the subjects used two
additional patterns in the extended pattern set only to a limited extent
and had problems with their correct application. No significant differ-
ence in the correctness level of pursued changes nor in the time re-
quired to capture those changes using the extended pattern set com-
pared to the minimal set of change patterns was observed.

The major contribution of this article is the empirical study on ef-
ficiency of performing changes in EDSOAs, to find answers to our re-
search questions RQ1 and RQ2.

In our previous work [1,37–39], we investigate and adapt change
patterns in the context of event-based architectures dealing with the
lack of prescribed execution descriptions and the potentialy aribrarily
changed relationships between constituent elements of a system. In
order to deal with the complexity and the large degree of flexibility of
event-based architectures, in this article we combine our prior works
into a novel design method for the evolution of EDSOAs. As another
novel major contribution, we present an empirical study in which we
evaluated our approach with 90 participants.

This article is organized as follows: In Section 2, we discuss the
related work, and in Section 3, we describe the required background on
EDSOAs and change operations in their context. We then describe our
change pattern Based design method for supporting EDSOA evolution in
Section 4. Next, in Section 5 we discuss our empirical study on the
efficiency of performing changes in EDSOAs using our pattern based
approach. Finally in Section 6, we summarize our main contributions.

2. Related work

2.1. Related works on change patterns

Starting from the seminal work on the evolution of software systems
by Lehman [17], several techniques for supporting different types of
system evolutions have been investigated in different application do-
mains [2]. One of the important works presented by Weber
et al. [31,44] identified a large set of change patterns that are fre-
quently occurring in the most of today’s process-aware information
systems (PAIS). The change patterns observed by Weber et al. targeted
PAISs in which the execution order of the elements are prescribed at
design time and unchanged or slightly deviated from the prescribed
descriptions at runtime, therefore, not readily applicable for event-
based systems where components are highly decoupled from each
other. However, these patterns can be used as a basis for defining the
corresponding change patterns for event-based systems (see e.g.
[37–39]), since the structure of PAISs (i.e. process instances and their
connections) can in principle be mapped to the structure of EDSOAs
(i.e. event-based components and their connections). But, the specifi-
cities of EDSOAs in terms of e.g. the events that the EDSOA components
send and/or receive or the execution domains need to be taken into
account additionally. For instance, in PAISs the change primitives only
deal with adding or deleting a node or an edge, while in EDSOAs ad-
ditional primitives like e.g. replace an event of the component’s input
and/or output port or remove a set of events from the port (see [37])
need to be considered.

Because of the loose coupled nature of EDSOAs, different variants of
change patterns known from PAIS with different semantics may exist.

S. Tragatschnig et al. Information and Software Technology xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6948023

Download Persian Version:

https://daneshyari.com/article/6948023

Daneshyari.com

https://daneshyari.com/en/article/6948023
https://daneshyari.com/article/6948023
https://daneshyari.com

