
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

We’re doing it live: A multi-method empirical study on continuous
experimentation

Gerald Schermann⁎,a, Jürgen Citoa, Philipp Leitnera, Uwe Zdunb, Harald C. Galla

a Department of Informatics, University of Zurich, Switzerland
bUniversity of Vienna, Austria

A R T I C L E I N F O

Keywords:
Release engineering
Continuous deployment
Continuous experimentation
Empirical study

A B S T R A C T

Context: Continuous experimentation guides development activities based on data collected on a subset of online
users on a new experimental version of the software. It includes practices such as canary releases, gradual
rollouts, dark launches, or A/B testing.
Objective: Unfortunately, our knowledge of continuous experimentation is currently primarily based on well-
known and outspoken industrial leaders. To assess the actual state of practice in continuous experimentation, we
conducted a mixed-method empirical study.
Method: In our empirical study consisting of four steps, we interviewed 31 developers or release engineers, and
performed a survey that attracted 187 complete responses. We analyzed the resulting data using statistical
analysis and open coding.
Results: Our results lead to several conclusions: (1) from a software architecture perspective, continuous ex-
perimentation is especially enabled by architectures that foster independently deployable services, such as
microservices-based architectures; (2) from a developer perspective, experiments require extensive monitoring
and analytics to discover runtime problems, consequently leading to developer on call policies and influencing
the role and skill sets required by developers; and (3) from a process perspective, many organizations conduct
experiments based on intuition rather than clear guidelines and robust statistics.
Conclusion: Our findings show that more principled and structured approaches for release decision making are
needed, striving for highly automated, systematic, and data- and hypothesis-driven deployment and experi-
mentation.

1. Introduction

Many software developing organizations are looking into ways to
further speed up their release processes and to get their products to
their customers faster [1]. One instance of this is the current industry
trend to “move fast and break things”, as made famous by Facebook [2]
and in the meantime adopted by a number of other industry leaders [3].
Another example is continuous delivery and deployment (CD) [4].
Continuous delivery is a software development practice where software is
built in such a way that it can be released to production at any time,
supported by a high degree of automation [5]. Continuous deployment
goes one step further; software is released to production as soon as it is
ready, i.e., passing all quality gates along the deployment pipeline.
These practices pave the way for controlled continuous experimenta-
tion (e.g., A/B testing [6], canary releases [4]), which are a means to
guide development activities based on data collected on a subset of
online users on a new experimental version of the software.

Unfortunately, our knowledge of continuous experimentation practices
is currently primarily based on well-known and outspoken industrial
leaders [6,7]. This is a cause for concern for two reasons. Firstly, it
raises the question to what extent our view of these practices is coined
by the peculiarities and needs of a few innovation leaders, such as
Microsoft, Facebook, or Google. Secondly, it is difficult to establish
what the broader open research issues in the field are.

Hence, we conducted a mixed-method empirical study, in which we
interviewed 31 software developers and release engineers from 27
companies. To get the perspective of a broader set of organizations, we
specifically focused on a mix of different team and company sizes and
domains. However, as continuous experimentation is especially amen-
able for Web-based applications, we primarily selected developers or
release engineers from companies developing Web-based applications
for our interviews. We combined the gathered qualitative interview
data with an online survey, which attracted a total of 187 complete
responses. The design of the study was guided by the following research

https://doi.org/10.1016/j.infsof.2018.02.010
Received 28 March 2017; Received in revised form 21 February 2018; Accepted 27 February 2018

⁎ Corresponding author.
E-mail addresses: schermann@ifi.uzh.ch (G. Schermann), cito@ifi.uzh.ch (J. Cito), leitner@ifi.uzh.ch (P. Leitner), uwe.zdun@univie.ac.at (U. Zdun), gall@ifi.uzh.ch (H.C. Gall).

Information and Software Technology 99 (2018) 41–57

Available online 10 March 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.02.010
https://doi.org/10.1016/j.infsof.2018.02.010
mailto:schermann@ifi.uzh.ch
mailto:cito@ifi.uzh.ch
mailto:leitner@ifi.uzh.ch
mailto:uwe.zdun@univie.ac.at
mailto:gall@ifi.uzh.ch
https://doi.org/10.1016/j.infsof.2018.02.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.02.010&domain=pdf


questions.
RQ1 : What principles and practices enable and hinder organizations to

leverage continuous experimentation?
We identified the preconditions for setting up and conducting con-

tinuous experiments. Continuous experimentation is facilitated through
a high degree of deployment automation and the adoption of an ar-
chitecture that enables independently deployable services (e.g., mi-
croservices-based architectures [8]). Important implementation tech-
niques include feature toggles [9] and runtime traffic routing [10].
Experimenting on live systems requires more insight into operational
characteristics of these systems. This requires extensive monitoring and
safety mechanisms at runtime. Developer on call policies are used as
risk mitigation practices in an experimentation context. Experiment
data collection and interpretation is essential. However, not all teams
are staffed with experts in all relevant fields, we have seen that these
teams can request support from internal consulting teams (e.g., data
scientists, DevOps engineers, or performance engineers).

RQ2 : What are the different flavors of continuous experimentation and
how do they differ?

Having insights into the enablers and hindrances of experimenta-
tion, we then investigated how companies make use of experimenta-
tion. Organizations use different flavors of continuous experimentation
for different reasons. Business-driven experiments are used to evaluate
new functionality from a business perspective, first and foremost using
A/B testing [6]. Regression-driven experiments are used to evaluate non-
functional aspects of a change in a production environment, i.e., vali-
date that a change does not introduce an end user perceivable regres-
sion. In our study, we have observed differences in these two flavors
concerning their main goals, evaluation metrics, how their data is in-
terpreted, and who bears the responsibility for different experiments.
We have also seen commonalities in how experiments are technically
implemented and what their main obstacles of adoption are.

Based on the outcomes of our study, we propose a number of pro-
mising directions for future research. Given the importance of archi-
tecture for experimentation, we argue that further research is required
on architectural styles that enable continuous experimentation. Further,
we conclude that practitioners are in need of more principled ap-
proaches to release decision making (e.g., which features to conduct
experiments on, or which metrics to evaluate).

The rest of this paper is structured as follows. In Section 2, we in-
troduce common continuous experimentation practices. Related pre-
vious work is covered in Section 3. Section 4 gives more detail on our
chosen research methodology, as well as on the demographics of our
study participants and survey respondents. The main results of our re-
search are summarized in Sections 5 and 6, while more details on the
main implications and derived future research directions are given in
Section 7. Finally, we conclude the paper in Section 8.

2. Background

Adopting CD, thus increasing release velocity, has been claimed to
allow companies to take advantage of early customer feedback and
faster time-to-market [1]. However, moving fast increases the risk of

rolling out defective versions. While sophisticated test suits are often
successful in catching functional problems in internal test environ-
ments, performance regressions are more likely to remain undetected,
hitting surface only under production workloads [11]. Techniques such
as user acceptance testing help companies estimate how users ap-
preciate new functionality. However, the scope of those tests is limited
and allows no reasoning about the demand of larger populations. To
mitigate these risks, companies have started to adopt various con-
tinuous experimentation practices, most importantly canary releases,
gradual rollouts, dark launches, and A/B testing. We provide a brief
overview of these experimentation practices in Section 2.1, followed by
an introduction to two common techniques how these practices can be
implemented in Section 2.2.

2.1. Experimentation practices

Fig. 1 illustrates the practices of canary releases, dark launches, and
A/B testing.

Canary releases. Canary releases [4] are a practice of releasing a
new version or feature to a subset of customers only (e.g., randomly
selecting 5% of all customers in a geographic region), while the re-
maining customers continue using the stable, previous version of the
application. This type of testing new functionality in production limits
the scope of problems if things go wrong with the new version.

Dark launches. Dark, or shadow, launching [2,12] is a practice to
mitigate performance or reliability issues of new or redesigned func-
tionality when facing production-scale traffic. New functionality is
deployed to production environments without being enabled or visible
for any users. However, in the backend, “silent” queries generated
based on production traffic are forwarded to the “shadow” version. This
provides insights into how the feature would be behaving in produc-
tion, without actually impacting users.

Gradual rollouts. Gradual rollouts [4] are often combined with
other continuous experimentation practices, such as canary releases or
dark launches. The number of users assigned to the newest version is
gradually increased (e.g., increase traffic routed to the new version in
5% steps) until the previous version is completely replaced or a pre-
defined threshold is reached.

A/B testing. A/B testing [6] comprises running two or more var-
iants of an application in parallel, which only differ in an isolated im-
plementation detail. The goal is to statistically evaluate, usually based
on business metrics (e.g., conversion rate), which of those versions
performed better, or whether there was a statistically significant dif-
ference at all.

2.2. Implementation techniques

The two common implementation techniques for conducting ex-
periments are feature toggles and runtime traffic routing.

Feature toggles. Feature toggles [9] are a code-level experi-
mentation technique. In their simplest form, they are conditional
statements in the source code deciding about which code block to
execute next (e.g., whether a certain feature is enabled for a specific

Canary Release

Old Version
95%

5%
New Version

Dark Launch

Existing 
System

100%
(duplicated

traffic)

New 
Feature

A/B Test

Variant A

Variant B

100%

50%

50%

Fig. 1. Overview of canary releases, dark launches, and A/B testing.

G. Schermann et al. Information and Software Technology 99 (2018) 41–57

42



Download English Version:

https://daneshyari.com/en/article/6948033

Download Persian Version:

https://daneshyari.com/article/6948033

Daneshyari.com

https://daneshyari.com/en/article/6948033
https://daneshyari.com/article/6948033
https://daneshyari.com

