
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Machine translation-based bug localization technique for bridging lexical
gap

Yan Xiao⁎, Jacky Keung, Kwabena E. Bennin, Qing Mi
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

A R T I C L E I N F O

Keywords:
Bug localization
Deep learning
Machine translation
Lexical mismatch

A B S T R A C T

Context: The challenge of locating bugs in mostly large-scale software systems has led to the development of bug
localization techniques. However, the lexical mismatch between bug reports and source codes degrades the
performances of existing information retrieval or machine learning-based approaches.
Objective: To bridge the lexical gap and improve the effectiveness of localizing buggy files by leveraging the
extracted semantic information from bug reports and source code.
Method: We present BugTranslator, a novel deep learning-based machine translation technique composed of an
attention-based recurrent neural network (RNN) Encoder-Decoder with long short-term memory cells. One RNN
encodes bug reports into several context vectors that are decoded by another RNN into code tokens of buggy
files. The technique studies and adopts the relevance between the extracted semantic information from bug
reports and source files.
Results: The experimental results show that BugTranslator outperforms a current state-of-the-art word embed-
ding technique on three open-source projects with higher MAP and MRR. The results show that BugTranslator
can rank actual buggy files at the second or third places on average.
Conclusion: BugTranslator distinguishes bug reports and source code into different symbolic classes and then
extracts deep semantic similarity and relevance between bug reports and the corresponding buggy files to bridge
the lexical gap at its source, thereby further improving the performance of bug localization.

1. Introduction and motivation

The high cost of manual bug localization, especially for large soft-
ware systems, has instigated the design of automated techniques to help
developers prioritize and focus on potentially buggy files based on bug
reports. However, bug reports are written in natural language, whereas
source files are represented by code tokens. The differences between
them in expression and representation lead to a lexical mismatch pro-
blem, which stifles the effectiveness and accuracy of proposed bug lo-
calization techniques in detecting buggy files [5,8,9].

To improve the accuracy of bug localization, recent techniques [5,8]
include the similarity between bug reports and application program-
ming interface (API) entities (class and interface names) to bridge the
lexical gap. Ye et al. [9] applied word embedding (WE) to obtain word
vectors of bug reports and source code in a shared representation space.
These approaches regard the code tokens in source files as the same
natural languages used in bug reports, which fails to effectively sup-
press the effects of lexical mismatch on bug localization.

To address the above issue of lexical mismatch and thereby further

improve the performance of bug localization, we distinguish bug re-
ports and source files into different symbolic classes and formulate the
bug localization problem as a machine translation problem. For ex-
ample, during the machine translation process of an English sentence
into a French sentence, the two sentences are represented in different
languages (symbols), but they represent similar meaning. Likewise, the
pairs of API description and API sequence denote similar operations by
different representations. Significantly, a machine translation technique
achieves outstanding performance in the generation of API sequences
given a natural language query [3]. Motivated by this, we propose a
novel bug localization model, BugTranslator, based on a recurrent
neural network (RNN) Encoder-Decoder with long short-term memory
(LSTM) cells by absorbing useful modules from famous machine
translation models [1,2,7].

The main contributions of this paper are:

• To the best of our knowledge, we are the first to introduce the
machine translation technique to the area of bug localization and to
propose a novel method of bridging the lexical gap radically.

https://doi.org/10.1016/j.infsof.2018.03.003
Received 22 August 2017; Received in revised form 1 March 2018; Accepted 1 March 2018

⁎ Corresponding author.
E-mail addresses: yanxiao6-c@my.cityu.edu.hk (Y. Xiao), Jacky.Keung@cityu.edu.hk (J. Keung), kebennin2-c@my.cityu.edu.hk (K.E. Bennin), Qing.Mi@my.cityu.edu.hk (Q. Mi).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: XIAO, Y., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.03.003

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.03.003
https://doi.org/10.1016/j.infsof.2018.03.003
mailto:yanxiao6-c@my.cityu.edu.hk
mailto:Jacky.Keung@cityu.edu.hk
mailto:kebennin2-c@my.cityu.edu.hk
mailto:Qing.Mi@my.cityu.edu.hk
https://doi.org/10.1016/j.infsof.2018.03.003

• Empirically validate the effectiveness of BugTranslator in over-
coming the lexical mismatch challenge.

2. Lexical mismatch in bug localization

Lexical mismatch means that a similar meaning can be expressed by
different vocabulary or languages. In the field of bug localization, bug
reports and source code represent similar operations with different
expressions. This lexical mismatch challenge also limits the perfor-
mance of existing bug localization techniques [5,8].

Lam et al. [5] attempted to bridge the lexical gap by combining
deep neural networks (DNNs) with information retrieval techniques.
However, their experimental results showed that DNNs without in-
formation retrieval techniques achieve very poor performance. The WE
method was used by Ye et al. [9] to obtain document similarities as two
new features added into their previously proposed linear learning-to-
rank model (LR) [8]. The natural language in bug reports and code
snippets in source files were projected by the WE method into vectors.
Their model contained the semantic similarity between the two bags-of-
words of bug reports and source codes.

Significantly, the approaches that attempted to bridge the lexical
gap were experimentally validated to outperform those that ignored the
lexical mismatch, which also revealed the existing challenge caused by
lexical mismatch.

3. BugTranslator

In this section, we describe the proposed BugTranslator model in
detail.

3.1. Generating training instances

We first prepare the training set for BugTranslator: API documents,
project-specific documents, and older bug reports with corresponding
buggy files. We attempt to translate bug reports into corresponding
buggy files based on the deep semantic similarity and relevance be-
tween them. Thus, the first training instances are the pairs of older bug
reports and abstract syntax tree (AST) nodes parsed from corresponding
buggy files. During testing, some out-of-vocabulary words never appear
in older bug reports and their corresponding buggy files, and this is
known to decrease the accuracy of most translation models [2]. In
addition to older bug reports and corresponding buggy files, API
documents and project-specific documents are included in the training
set to enrich the vocabulary and detect some comprehensive informa-
tion.

The API annotations and corresponding API sequences from API
documents in Java SE 7 are extracted as noted in the literature [3]. The
source code is parsed into AST nodes that include field declarations and
type bindings of all classes and methods. In addition, the method-level
code summaries are extracted as corresponding annotations. The pro-
ject-specific documents are also included in addition to the API docu-
ments that are generally invoked by all projects. Paired with annota-
tions of classes, methods, and fields, the source code is parsed into AST
nodes of declarations, method invocations, and class instance creations.

3.2. Attention-based RNN encoder-decoder with LSTM cells

To learn how to translate natural languages into code tokens, we
build an attention-based RNN Encoder-Decoder model with LSTM cells.
The workflow is shown in Fig. 1, which illustrates an example of
translating the natural language term audio file player into a sequence of
code tokens. The source sentences are first encoded into several context
vectors from which the decoder generates target sentences. The context
vectors are the bridge between the source sentences and the target
sentences.

3.2.1. Encoder RNN
The source sentences and target sentences are first embedded into 1-

of-K (K is the vocabulary size)-coded word vectors [1],
= … …X x x x(, , , ,)i S1 and = … …Y y y y(, , , ,)j T1 respectively, where S and

T represent the lengths of the source and target sentences. The Encoder
first reads the coded word vector x1 embedded by the first word audio
and then computes the current hidden state he1 by he0 and x1 according
to Eq. (1). The initial hidden state he0 is set to 0. The second hidden
state he2 is then updated by he1 and word vector x2 of the second word.
This process continues until the last hidden state he3 is updated by (1).
At each time t, the hidden state is updated by:

= −h LSTM h x(,)et e t t(1) (1)

It has been shown empirically that LSTM works well on machine
translation of long sentences [7]. Because bug reports tend to include
long sentences, we use RNN with LSTM cells.

In practice, each word in the source sentences has different im-
portance to the word in the target sentences. It is inappropriate to en-
code the entire source sentence into only one context vector, which has
also been verified experimentally in the literature [1]. Therefore, in this
paper, the context vector vj at each step is expressed by the weighted
sum of the hidden states of the encoder as discussed in [1].

3.2.2. Decoder RNN
The Decoder is another RNN that is trained to generate the target

sentence sequentially based on the context vectors obtained from the
encoder RNN. The first word y0 is set as < START> , and the initial
hidden state hd0 is calculated by =h W htanh(),d d e0 1 where Wd is the
weight that can be learned during training and he1 is computed by
Eq. (1). The Decoder then computes the hidden state hd1 using hd0, y0,
and the context vector v1 by Eq. (2), followed by prediction of the first
word InputStream.new.

The hidden state hdt at time t is computed by:

= − −h LSTM h y v(, ,)dt d t t t(1) 1 (2)

The conditional probability of yt given the previous predicted words
and context vector is defined as:

… =− − −p y y y y v g h y v(, , , ,) (, ,)t t t t dt t t1 2 1 1 (3)

where g is a softmax activation function.
This process continues until the end-of-sentence word < EOS> is

predicted.
The Decoder defines a probability over the target sentence Y as:

∏= …
=

− −p Y p y y y y v() (, , , ,)
t

T

t t t t
1

1 2 1
(4)

The two RNNs are then trained jointly to maximize the following

Fig. 1. Overall workflow of attention-based RNN Encoder-Decoder with LSTM cells.

Y. Xiao et al. Information and Software Technology xxx (xxxx) xxx–xxx

2

Download English Version:

https://daneshyari.com/en/article/6948034

Download Persian Version:

https://daneshyari.com/article/6948034

Daneshyari.com

https://daneshyari.com/en/article/6948034
https://daneshyari.com/article/6948034
https://daneshyari.com

