

Accepted Manuscript

Fixing Class Design Inconsistencies using Self Regulating Particle
Swarm Optimization

Renu George , Philip Samuel

PII: S0950-5849(18)30041-7
DOI: 10.1016/j.infsof.2018.03.005
Reference: INFSOF 5969

To appear in: Information and Software Technology

Received date: 2 October 2017
Revised date: 4 March 2018
Accepted date: 5 March 2018

Please cite this article as: Renu George , Philip Samuel , Fixing Class Design Inconsistencies us-
ing Self Regulating Particle Swarm Optimization, Information and Software Technology (2018), doi:
10.1016/j.infsof.2018.03.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.03.005
https://doi.org/10.1016/j.infsof.2018.03.005

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

* Corresponding author.

E-mail address: renugeorge@ceconline.edu (Renu George)

Fixing Class Design Inconsistencies using Self Regulating Particle

Swarm Optimization

Renu George
a,

*, Philip Samuel
b

aDepartment of Computer Science, Cochin University of Science and Technology, Kochi, Kerala, India
bInformation Technology, SOE, Cochin University of Science and Technology, Kochi, Kerala, India

A R T I C L E I N F O

Keywords:

Class diagram,

Activity diagram,

Consistency,

 Self regulating particle swarm

optimization,

Artificial intelligence

A B S T R A C T

Context: The practice of using Unified Modeling Language models during software development and the

chances of occurrence of model inconsistencies during software design are increasing. Hence detection of

intra-model design inconsistencies is significant in the development of quality software.

Objective: The existing approaches of detecting class attribute inconsistencies rely on human decision

making. Manual detection of inconsistencies is exhaustive, time consuming and sometimes incomplete.

Therefore, we propose an automated and novel approach to perform consistency check of class attributes

using artificial intelligence.

Method: Inconsistency in attribute definition and specification is detected and fixed with Self Regulating

Particle Swarm Optimization (SRPSO) algorithm that uses a fitness function to optimize the consistency

of attributes in class diagram and activity diagrams. SRPSO is preferred since the best particle is not

influenced by its or others experience and uses its direction as the best direction and the remaining

particles use self and social knowledge to update their velocity and position.

Result: The use of artificial intelligence technique for detection and fixing of inconsistencies during the

software design phase ensures design completeness through generation of models with consistent attribute

definitions and a significant improvement in software quality prediction, accurate code generation,

meeting time deadlines, and software production and maintenance cost is achieved.

Conclusion: Ensuring consistency and completeness of models is an inevitable aspect in software design

and development. The proposed approach automates the process of inconsistency detection and correction

in class attribute definition and specification using SRPSO algorithm during the design phase of software

development.

1. Introduction

Artificial Intelligence (AI) deals with techniques to make machines intelligent, whereas software engineering deals with the task of designing,

implementing and deploying complex systems. Design and implementation of software systems is a much more difficult and challenging engineering

discipline since software is well concealed. AI deals with replicating intelligence in machines and hence can be used to solve complex and challenging

problems in software engineering. The techniques and algorithms of AI have an impact in almost all areas of software engineering [13].

Model Driven Approach (MDA) proposed by Object Management Group is a design approach for the development of software and the modeling

language widely used for requirements modeling and documentation of the system is Unified Modeling Language (UML). UML is a collection of diagram

centric design notations that are loosely connected. UML provides a facility to design a software system by expressing independent views. Class diagrams

and activity diagrams portray the static and dynamic views of the system being designed. The implementation of a class diagram method, represented with

an activity diagram involves class attributes. Class design inconsistency arises if the attributes referenced in the activity diagram is undefined in the class.

Large complex systems require different models. A model, representing the system, is group of UML model elements at a given stage of abstraction.

Inconsistencies occur between UML models and requirements, standards, or other design artifacts or within a UML model. Modification or improvement

in the models may also lead to inconsistencies. Inconsistency may occur due to constraint violation and contradictory requirements. The chances of

making contradictory decisions are more and detection of inconsistencies has become vital for the development of accurate software. Inconsistencies

result directly in software defects. The defects can be prevented by systematic UML model consistency checking. Two types of consistency are defined on

design models: horizontal or intra-model consistency and vertical or inter-model consistency. The consistency possessed by different model elements

belonging to the same version is named as intra-model consistency. The consistency expected between a model and its different versions is named as

inter-model consistency. Model elements of the same version may represent the static view as well as the dynamic view of the modeling domain [3].

Particle swarm optimization (PSO) introduced in 1995 by Kennedy and Eberhart is motivated by the cooperative behavior of a flock of birds or a

school of fish seeking for food. PSO is an optimization technique based on population with computational intelligence [1]. The concept of PSO is simple,

uses primitive operators, searching mechanism is unique, is easy to implement, and is computationally efficient and inexpensive. The properties of PSO

Download English Version:

https://daneshyari.com/en/article/6948037

Download Persian Version:

https://daneshyari.com/article/6948037

Daneshyari.com

https://daneshyari.com/en/article/6948037
https://daneshyari.com/article/6948037
https://daneshyari.com

