
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Not all bug reopens are negative: A case study on eclipse bug reports

Qing Mi⁎,a, Jacky Keunga, Yuqi Huob, Solomon Mensaha

a Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
b School of Information, Renmin University of China, Beijing, China

A R T I C L E I N F O

Keywords:
Non-negative bug reopen
Bug report
Reopen cycle
Data quality
Open source software
Empirical software engineering

A B S T R A C T

Context: We observed a special type of bug reopen that has no direct impact on the user experience or the normal
operation of the system being developed. We refer to these as non-negative bug reopens.
Objective: Non-negative bug reopens are novel and somewhat contradictory to popular conceptions. Therefore,
we thoroughly explored these phenomena in this study.
Method: We begin with a novel approach that preliminarily characterizes non-negative bug reopens. Based on
bug reports extracted from Eclipse Bugzilla, we then examined a case study to compare non-negative and regular
bug reopens using the Wilcoxon-Mann-Whitney test.
Results: The results show that non-negative bug reopens are statistically significantly different than regular bug
reopens, based on their survival times and the number of developers involved in the entire debugging process.
Conclusion: Taking into account the significant differences, we suggest that the effects of non-negative bug
reopens should be considered in future research in related areas, such as bug triage and reopened bug prediction.

1. Introduction

A software bug that has been REOPENED for further processing
after being RESOLVED/VERIFIED/CLOSED is known as areopened bug.
Approximately 6%–10% of total bugs are eventually reopened [1], but
the problem of bug reopening has only recently attracted the attention
of the software engineering community. Zimmermann et al. [2] char-
acterized the reopening process using a mixed approach. Shihab et al.
[3] constructed decision trees to predict whether a bug will be reo-
pened. Xia et al. [4] used a combination of three classifiers to improve
the performance of reopened bug prediction.

Research on bug reopens is important to the software engineering
community as it provides capabilities needed to: 1) Plan maintenance
efforts taking into account the reopening rate [1]; 2) Characterize the
actual quality of the bug fixing process [2]; 3) Prepare practitioners to
think twice before closing a bug [3,4]. Our work here is complementary
to previous studies.

Bug reopens are normally considered to be negative since they take
longer to be resolved [1,3,4], cause rework for already-busy developers
[1,4], and degrade the user-perceived quality of the software product
[3]. However, the results of this study indicate otherwise. Table 1 lists a
variety of reopen reasons determined in our previous investigation [1].
Further analysis revealed that a significant proportion of bug reopens
have no direct effect on the user experience or the normal operation of

the system being developed. For instance, R4, R6, and R7 in Table 1
may be considered to be either non-essential or non-negative bug re-
opens. A case study on Eclipse bug reports is examined; we show, sta-
tistically, that non-negative bug reopens are significantly different than
regular bug reopens, based on their survival times and the number of
developers involved in the entire debugging process. Thus, we propose
that non-negative bug reopens should not be treated as equivalent to
regular bug reopens.

2. Identifying non-negative bug reopens

We begin by presenting an overview of the reopen cycle and its
corresponding taxonomy. Three patterns are then proposed to char-
acterize non-negative bug reopens.

2.1. Reopen cycle and its representation

Our research is based on Bugzilla,1 a popular system used to track
reported software bugs [5]. Fig. 1 shows the typical timeline for a
Bugzilla bug. Note that the lifetime for a regular bug (the upper arrow
in Fig. 1) is considered to be completed when it first reaches the status
RESOLVED/VERIFIED/CLOSED, whereas a reopened bug (the lower
arrow in Fig. 1) survives for at least one more reopen cycle as de-
picted in the dotted rectangles in Fig. 1.

https://doi.org/10.1016/j.infsof.2018.03.006
Received 4 October 2016; Received in revised form 29 January 2018; Accepted 5 March 2018

⁎ Corresponding author.
E-mail addresses: Qing.Mi@my.cityu.edu.hk (Q. Mi), Jacky.Keung@cityu.edu.hk (J. Keung), bnhony@ruc.edu.cn (Y. Huo), smensah2-c@my.cityu.edu.hk (S. Mensah).

1 https://www.bugzilla.org.

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Mi, Q., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.03.006

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.03.006
https://doi.org/10.1016/j.infsof.2018.03.006
mailto:Qing.Mi@my.cityu.edu.hk
mailto:Jacky.Keung@cityu.edu.hk
mailto:bnhony@ruc.edu.cn
mailto:smensah2-c@my.cityu.edu.hk
https://www.bugzilla.org
https://doi.org/10.1016/j.infsof.2018.03.006


A typical reopen cycle consists of four stages: RESOLVED/VERIF-
IED/CLOSED, REOPENED, ASSIGNED, and then back to RESOLVED/
VERIFIED/CLOSED. Every time a bug goes through the RESOLVED/
VERIFIED/CLOSED stage, one of the possible resolutions (FIXED,
DUPLICATE, WONTFIX, WORKSFORME, INVALID, NOT_ECLIPSE,
LATER, and REMIND) is used to describe what happened to the bug.
Ideally, all resolutions should be properly verified, yet many bugs end
up with the status RESOLVED in practice.

To represent the reopen cycle, we followed the method detailed by
Jongyindee et al. [6], which is designed to symbolize bug history in the
form of status changes (e.g., NEW ⇒ ASSIGNED ⇒ RESOLVED
(FIXED)). Because the objective of our study differed from that of
Jongyindee et al., we used a relatively concise format that ignored bug
status and was restricted only to resolutions. Accordingly, each reopen
cycle can be characterized as a pair of resolutions, for instance, WOR-
KSFORME ⇒ FIXED. In this scheme, “⇒” stands for sequence rather
than causality.

2.2. Taxonomy of reopen cycles

Given that reopen cycles served as the basis for this study, a clas-
sification framework was developed to facilitate further analysis.

Based on whether a check-in to a code repository is involved, re-
solutions fall broadly into two groups: Fixed (FIXED) and Non-Fixed
(DUPLICATE, WONTFIX, WORKSFORME, INVALID, NOT_ECLIPSE,
LATER, and REMIND). Accordingly, all reopen cycles can be divided
into the following four types: T1. Fixed ⇒ Fixed; T2. Non-Fixed ⇒
Fixed; T3. Fixed ⇒ Non-Fixed; T4. Non-Fixed ⇒ Non-Fixed.

As shown in Table 1, R1 and R2 are the typical scenarios for T2,
whereas R3, R4, and R5 fall into T1. However, R6 and R7 cannot be
classified into any single type; these were the main targets for our
identification as non-negative bug reopens.

2.3. Patterns of non-negative bug reopens

The primary criteria for non-negative bug reopens are that neither
the user experience nor the system execution performance is sig-
nificantly affected. Therefore, we focused solely on reopen cycles
without code modification; thus, only T3 and T4 were within the scope
of our research. Accordingly, a total of three patterns were proposed to
identify non-negative bug reopens:

• P1. Fixed ⇒ INVALID/WORKSFORME/NOT_ECLIPSE (T3)
The pattern is proposed to partially identify R7. In some circum-
stances, reported bugs are erroneously labeled as FIXED when no
code churns have actually been made. The assigned developer rea-
lizes his or her oversight and reopens the bug to provide a proper
resolution.

• P2. Non-Fixed ⇒ The same resolution (T4)
The pattern is comprised of a pair of consistent resolutions (e.g.,
INVALID ⇒ INVALID) and is used to partially identify: 1) R6 (where
the bug is closed with the same resolution after being mistakenly
reopened) and 2) R7 (where the bug maintains the same resolution
after being reopened to correct the accompanying attributes (e.g.,
severity and priority)).

• P3. INVALID/WORKSFORME/NOT_ECLIPSE ⇒ INVALID/WORKS-
FORME/NOT_ECLIPSE (T4)
The pattern is used to partially identify R7. In practice, some bug
reopens result from developers’ incomplete understanding of sta-
tuses such as INVALID, WORKSFORME, and NOT_ECLIPSE, that all
represent false positives to varying degrees.

3. Case study

We first present a brief introduction to the studied systems and
dataset. After that, we describe the case study on Eclipse bug reports

Table 1
Root causes for bug reopens. The reason IDs are in accordance with those used in our previous work [1]. The eighth category of reopen reasons, rare causes, is intentionally omitted from
this study.

Classification ID Reopen reason Description Type

Unsuccessful fix R1 Bug reporter’s unclear description The bug-related information (e.g., steps to reproduce) provided by the reporter
may be incomplete, ambiguous, or inaccurate.

T2

R2 Developer’s negligence The assigned developers do not treat the reported bug seriously. T2
R3 Introduction of additional

problems
The bug has been resolved, yet some unexpected problems (e.g., instability) are
introduced into the system.

T1

R5 Incomplete fix The bug is thought to be resolved, yet someone reproduces the issue on a later
version.

T1

Further improvements and other
reasons

R4 A better solution The bug has been resolved, yet a better solution is found afterwards (typically by
the same developer).

T1

R6 Misapprehension The bug has been resolved, yet the reporter mistakenly considers that the issue
still exists.

T1, T4

R7 Inappropriate status The bug has been resolved, yet the accompanying attributes (e.g., resolution)
may be improperly or incorrectly completed.

T2, T3, T4

……

… …

DH1 DA1 DF1 DHi DAi DFi

… …

Fig. 1. Typical timeline for a Bugzilla bug.

Q. Mi et al. Information and Software Technology xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6948039

Download Persian Version:

https://daneshyari.com/article/6948039

Daneshyari.com

https://daneshyari.com/en/article/6948039
https://daneshyari.com/article/6948039
https://daneshyari.com

