
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Combinatorial-based event sequence testing of Android applications

David Adamo⁎, Dmitry Nurmuradov, Shraddha Piparia, Renée Bryce
University of North Texas, 1155 Union Circle #311366, Denton, TX 76203, USA

A R T I C L E I N F O

Keywords:
GUI testing
Automated testing
Combinatorial testing
Mobile apps
Android
Mobile application testing

A B S T R A C T

Context: Mobile applications are Event Driven Systems (EDS) that take Graphical User Interface (GUI) event
sequences as input and respond by changing their state. EDS are often tested with event sequences that exercise
system functionality. Much of prior work focuses on testing random event sequences. Combinatorial-based
techniques are often used to systematically generate event combinations and may be extended to test behavior
that occurs only when events are executed in a particular order. We expand upon the state-of-the-art by using
combinatorial-based techniques to systematically test Android applications with automatically generated GUI
event sequences.

Objective: This paper describes a combinatorial-based technique for automatic construction of Android ap-
plication test suites. The goal is to minimize redundant execution of events, maximize coverage of event com-
binations, and increase the likelihood of testing behavior that occurs when GUI events are executed in a par-
ticular order.

Method: A greedy online algorithm selects and executes GUI events that maximize coverage of n-way event
combinations, where n is a specified event combination strength. We compare our combinatorial-based tech-
nique to random and frequency-based techniques. We use a two-hour time budget to generate test suites for ten
Android applications and empirically evaluate the test suites in terms of code and event coverage.

Results: Our 2-way and 3-way combinatorial-based test suites achieve better code and event coverage com-
pared to random and frequency-based test suites in the majority of our subject applications. The results show
that there is no significant difference in code or event coverage between 2-way and 3-way combinatorial-based
test suites.

Conclusion: Given the time budget, the combinatorial-based technique is more effective than random and
frequency-based techniques, but its effectiveness may vary depending on specific characteristics of the appli-
cation under test.

1. Introduction

Mobile devices have become an important part of society as they
provide a portable means of communication and access to computing
services. Smart mobile devices use Operating Systems (OS) that provide
a platform for applications in many critical domains such as e-com-
merce and mobile banking. It is important to develop techniques to
cost-effectively test these applications. Google’s Android holds the lar-
gest share of the mobile OS market worldwide [1]. Android applications
are Event Driven Systems (EDSs) that take Graphical User Interface
(GUI) event sequences as input and respond by changing their state.
Examples of GUI events include clicking a button or entering data in a
text field. EDSs are often tested with manually or automatically gen-
erated event sequences that exercise system functionality while cov-
ering as much source code as possible [2–6]. EDS often include

functionality that can be tested only when events in a sequence occur in
a particular order. Interactions among these events may cause a System
Under Test (SUT) to enter a failure state. Combinatorial-based methods
are able to test EDSs where the order of events is important [4]. These
methods often require adaptation to the specific constraints imposed by
GUI-based software such as mobile applications. As with other types of
EDS, it is important to test a mobile application’s response to specific
events executed in a particular order. The number of possible event
combinations in GUI-based software increases exponentially with the
number of events. Combinatorial-based methods for event sequence
testing manage this complexity by systematically examining combina-
tions for only a subset of events [4,7,8]. Empirical studies in combi-
natorial testing show that testing interactions among a small number of
inputs may be an effective way to detect software faults [9–12].

In this work, we develop a combinatorial-based technique for

https://doi.org/10.1016/j.infsof.2018.03.007
Received 18 May 2017; Received in revised form 15 January 2018; Accepted 6 March 2018

⁎ Corresponding author.
E-mail addresses: davidadamo@my.unt.edu (D. Adamo), dmitrynurmuradov@my.unt.edu (D. Nurmuradov), shraddhapiparia@my.unt.edu (S. Piparia),

renee.bryce@unt.edu (R. Bryce).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Adamo, D., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.03.007

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.03.007
https://doi.org/10.1016/j.infsof.2018.03.007
mailto:davidadamo@my.unt.edu
mailto:dmitrynurmuradov@my.unt.edu
mailto:shraddhapiparia@my.unt.edu
mailto:renee.bryce@unt.edu
https://doi.org/10.1016/j.infsof.2018.03.007


automatic construction of Android application test suites. Our online
algorithm iteratively selects and executes GUI events to construct event
sequences. It does not require static analysis of source code or static
abstract models of the Application Under Test (AUT). Our combina-
torial-based algorithm maintains a history of event combinations as
part of the test suite construction process. It uses the historical in-
formation to greedily select and execute events that maximize coverage
of n-event-tuples (i.e. n-way event combinations), where n is a specified
event combination strength. This technique enables online construction
of test suites with an increased likelihood of testing behavior that oc-
curs only when events are executed in a particular order.

Existing techniques for automated GUI testing pay limited attention
to combinatorial-based testing of mobile applications and often require
static analysis of source code or construction of static behavioral models
[3,11,13–19]. It is difficult to construct accurate models of GUI-based
software and testers may not have access to the AUT’s source code.
Prior work in online GUI testing of Android apps uses random and
frequency-based algorithms to execute event sequences [19–23]. These
random algorithms often use a uniform probability distribution to
randomly select GUI events and have a tendency to redundantly exe-
cute events without consideration for the order in which events have
previously occurred. Since our combinatorial-based technique max-
imizes coverage of event combinations, it may be effective for testing
Android app behavior that occurs only when events are executed in a
particular order.

This paper makes the following contributions:

• An online combinatorial-based technique to automatically construct
Android application test suites and maximize coverage of n-way
event combinations, where n is a specified event combination
strength.

• Results of an empirical study that compares 2-way and 3-way
combinatorial-based test suites to random and frequency-based test
suites across ten Android applications in terms of statement cov-
erage, statement coverage rate, and event coverage.

The results of our experiments show that given a two-hour time
budget for Android applications with 1026–7981 lines of code: (i) 2-
way and 3-way combinatorial-based test suites often achieve sig-
nificantly higher statement coverage compared to random and fre-
quency-based test suites (ii) 2-way and 3-way combinatorial-based test
suites often achieve significantly higher event coverage than random
and frequency-based test suites.

2. Background and related work

This section provides an overview of Android application GUIs,
combinatorial testing and automated GUI testing of Android applica-
tions.

2.1. Combinatorial testing

Combinatorial-based testing techniques systematically examine
combinations of parameter-values for a system. These techniques use
sampling mechanisms to cover all parameter-value combinations in as
few tests as possible. Empirical studies show that combinatorial-based
testing techniques often detect software faults triggered by interactions
among inputs of a system [9–12]. Kuhn et al. [9,10] study the faults in
several software projects and show that most faults are triggered by
interactions among six or fewer parameters.

A significant body of prior research proposes algorithms and tech-
niques to automatically generate covering arrays for combinatorial
testing [10,24–30]. Many of these algorithms focus on testing interac-
tions in systems where inputs are not sequence-based and the order of
inputs is not important. Kuhn et al. [4] apply combinatorial methods to
event sequence testing where the order of events is important. They use

Sequence Covering Arrays (SCA) to generate event sequences that test t
events in different possible t-way orders. Their technique is limited to
situations where events cannot be repeated, sequences are of fixed
length and there are no constraints on the validity of event sequences.
We extend their technique to the mobile application domain where we
must consider constraints on the order of events, sequences are not of
fixed length, and events may be repeated. We use an online algorithm
to adapt combinatorial event sequence testing to Android applications.

There are several applications of combinatorial-based methods to
GUI testing. Yuan et al. [11] use covering arrays to construct GUI event
sequences that cover all t-way sequences of events. Their technique is
based on Event Interaction Graphs (EIG) [11] and handles situations
where events can be repeated. The covering array is constructed from
an EIG model that has no ordering relationships between GUI events.
The next step of the process generates executable test cases by re-
inserting ordering relationships between events in each row of the
covering array. Wang et al. [3,13] use combinatorial techniques to
automatically construct navigational graphs for web applications. They
also describe a technique to test all pairwise (2-way) interactions be-
tween any two pages of a web application. Their work is specific to web
applications and is based on a navigational graph model of the AUT. Di
Lucca and Di Penta [14] present a technique that uses state-chart
models to test interactions between web applications and browsers.
They use graph-based coverage criteria to generate test cases that cover
all sequences of k transitions in the state-chart model. This requires that
the covered events must occur consecutively in sequence. Carino [31]
introduces Event Pair Graphs (EPGs) and uses them to automatically
execute event sequences of predefined length. The EPGs guide event
execution toward coverage of events and event pairs.

In this paper, we extend combinatorial methods to automatic con-
struction of Android application test suites. Our combinatorial-based
algorithm is adapted specifically to Android apps and probabilistically
regulates the length of event sequences to vary the number of events in
each test case. It allows specification of a desired event combination
strength and maintains a set of covered event combinations during test
suite construction to maximize coverage of n-event-tuples. The algo-
rithm considers the order in which events occur and does not rely on
static analysis of source code, EPGs or static abstract models of the AUT.

2.2. Android GUI overview

An Android app consists of several Java components that are in-
stantiated at runtime. Activities are the primary GUI components of
Android apps. Each activity in an Android app has a unique name and is
composed of GUI widgets that users may interact with (e.g. buttons and
text fields). Fig. 1 shows an instance of an Android activity with several

Fig. 1. Example of an Android application GUI.

D. Adamo et al. Information and Software Technology xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6948040

Download Persian Version:

https://daneshyari.com/article/6948040

Daneshyari.com

https://daneshyari.com/en/article/6948040
https://daneshyari.com/article/6948040
https://daneshyari.com

