
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Performance metamorphic testing: A Proof of concept

Sergio Segura⁎, Javier Troya, Amador Durán, Antonio Ruiz-Cortés
Departamento de Lenguajes y Sistemas, Informáticos Universidad de Sevilla, Spain

A R T I C L E I N F O

Keywords:
Metamorphic testing
Performance testing
Search–based testing

A B S T R A C T

Context: Performance testing is a challenging task mainly due to the lack of test oracles, i.e. mechanisms to
decide whether the performance of a program is acceptable or not because of a bug. Metamorphic testing enables
the generation of test cases in the absence of an oracle by exploiting the so–called metamorphic relations between
the inputs and outputs of multiple executions of the program under test. In the last two decades, metamorphic
testing has been successfully used to detect functional faults in different domains. However, its applicability to
performance testing remains unexplored.
Objective: We propose the application of metamorphic testing to reveal performance failures.
Method: We define Performance Metamorphic Relations (PMRs) as expected relations between performance
measurements of multiple executions of the program under test. These relations can be turned into assertions for
the automated detection of performance bugs, removing the need for complex benchmarks and domain experts
guidance. As a further benefit, PMRs can be turned into fitness functions to guide search–based techniques on the
generation of test data.
Results: The feasibility of the approach is illustrated through an experimental proof of concept in the context of
the automated analysis of feature models.
Conclusion: The results confirm the potential of metamorphic testing, in combination with search-based tech-
niques, to automate the detection of performance bugs.

1. Introduction

Performance testing [1] aims to reveal errors that cause significant
performance degradation in the program under test (PuT). Performance
defects are very common in released software programs. For example,
Mozilla developers fix between 5 and 60 user–reported performance
bugs every month [2]. Similarly, mobile applications bring new chal-
lenges like detecting energy leaks or memory bloats [3,4].

In contrast to functional bugs, performance bugs do not produce
wrong results or crashes in the PuT and therefore cannot be detected by
simply inspecting the program output. Therefore, they are significantly
harder to detect and require more time and effort to be fixed [1]. This is
mainly due to the lack of test oracles, i.e. mechanisms to decide whether
the performance of a program under a certain workload is acceptable or
not. Typical oracles in performance testing are human judgement or
comparisons among different programs with similar functionality
[1–3], which are far from trivial.

Metamorphic testing alleviates the oracle problem by checking whe-
ther multiple executions of the PuT fulfil certain necessary properties
called metamorphic relations. For instance, consider the program merge
(L1, L2) that merges two ordered lists into a single ordered list. The

parameter order should not influence the result, which can be expressed
as the following metamorphic relation: =merge L L merge L L(,) (,)1 2 2 1 . A
metamorphic relation comprises of one source test case (L1, L2) and one
or more follow–up test cases (L2, L1). Each metamorphic relation can be
instantiated into one or more metamorphic tests by using specific inputs,
e.g. =merge merge([2, 3], [1, 5]) ([1, 5], [2, 3]). If the outputs of the
source test cases and the follow–up test cases violate the relation
(equality in this example), the test is said to have failed, indicating that
the PuT contains a bug.

Recent surveys have reviewed the large body of papers on meta-
morphic testing and identified successful applications of the technique
in a variety of domains, ranging from web services to compilers [5,6].
Interestingly, however, it has been found that all the reviewed papers
focused on the detection of functional faults, with remarkable appli-
cations to areas such as proving, validation and quality assessment.
Therefore, the potential application of metamorphic testing for the
detection of performance bugs remains unexplored.

In a previous paper [7], we proposed the application of meta-
morphic testing to reveal performance failures, and we presented some
of the many challenges related to it. In this short paper, we go a step
further by confirming the feasibility of the approach in a realistic

https://doi.org/10.1016/j.infsof.2018.01.013
Received 4 December 2017; Received in revised form 22 January 2018; Accepted 29 January 2018

⁎ Corresponding author.
E-mail address: sergiosegura@us.es (S. Segura).

Information and Software Technology 98 (2018) 1–4

Available online 31 January 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.01.013
https://doi.org/10.1016/j.infsof.2018.01.013
mailto:sergiosegura@us.es
https://doi.org/10.1016/j.infsof.2018.01.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.01.013&domain=pdf

scenario.

2. Performance metamorphic testing

Let us suppose that merge(l1, l2) takes 300 ms to provide an output,
with l1 and l2 being two specific lists. Is this correct? Hard to say.
Intuitively, the execution time required to merge the lists should be
equal or greater if more elements are added to both lists. This can be
expressed as the following Performance Metamorphic Relation (PMR):

≤ ∪ ∪T merge L L T merge L L L L((,)) ((,))1 2 1 3 2 4

where T represents the execution time, and L3 and L4 are two nonempty
lists containing k random items. Based on this, metamorphic tests such
as T(merge(l1, l2))≤ T(merge(l1 ∪ l3, l2 ∪ l4)) could be applied. A key
benefit of PMRs is their independence of the selected inputs, i.e. the
previous one should be satisfied for any list. Thus, PMRs may be turned
into assertions for the automated detection of performance bugs, re-
moving the need for complex benchmarks and human judgement.

Real performance bugs can also inspire PMRs [7]. For example,
some users of the Chrome browser reported unexpected levels of
memory usage when loading images of different sizes.1 Rendering large
images was expected to consume more memory than rendering small
images. However—due to problems with the garbage collector—if a
small image was loaded after a bigger one, the memory usage increased.
Inspired by this bug, the following PMR could be defined:

≥M loadImg img M loadImg img(()) (())1 2 (PMR
1)

where M represents the memory consumed, and img2 is an image de-
rived from img1 but with a smaller size, for instance cropping it or
decreasing its quality.

2.1. Defining performance metamorphic relations

The rationale behind metamorphic testing is that bugs can be ex-
hibited when observing the differences among two or more program
executions with different inputs. However, it is unclear to what extent
performance bugs can be exposed with certain input values and remain
undetected with others.

Recent works have drawn conclusions that make us foresee the
usefulness of applying metamorphic testing in this context. In parti-
cular, Jin et al. found out that two thirds of the performance bugs need
inputs with special features to manifest [2], and Liu et al. [3] dis-
covered that one third of the bugs required special user interactions in
order to be revealed. These findings suggest that a significant portion of
performance bugs are revealed when exercising the program with cer-
tain inputs only.

2.2. Managing false positives and false negatives

In functional metamorphic testing, most metamorphic relations are
defined for deterministic programs where, for certain inputs, the relation
is either satisfied or violated, e.g. me

=rge merge([2, 3], [1, 5]) ([1, 5], [2, 3]). In contrast, the measurement
of non–functional properties such as execution time, memory con-
sumption or energy usage is inherently non–deterministic. For instance,
the battery power consumed by a mobile application could vary from
one execution to another due to the device workload, communication
issues or automated updates. In practice, this means that PMRs could be
sometimes violated without that being an indicator of a performance
bug, what results in a false positive. Analogously, PMRs could also
produce false negatives, i.e. situations where the relation is satisfied
despite the PuT being faulty.

In our previous work, we discussed different alternatives to address

false positives and false negatives, including tolerance thresholds to
allow certain differences in the performance measurements of source
and follow–up test cases [7]. For example, considering PMR1, false
positives could be mitigated by defining the following PMR using a
threshold β:

− ≤M loadImg img M loadImg img β(()) (())2 1

which means that the relation will only be marked as violated when the
memory consumed by img2 is greater than the memory consumed by
img1 by an amount of β or larger. The value of β could be set to an
absolute value (e.g. 100KB) or a relative value (e.g. 10%).

2.3. Test data generation

Detecting performance bugs by means of testing requires finding
test inputs that manifest the unexpected performance behavior in the
program under test, what can be extremely challenging [1–4]. We en-
vision that PMRs could help on the search of effective test inputs. This is
because unlike functional metamorphic relations, where the outcome is
Boolean (either satisfied or violated), PMRs can be translated to a nu-
meric result that reflects to what extend the relation is satisfied or
violated. In practice, this means that PMRs can be turned into fitness
functions to be used in search–based testing techniques. For instance,
PMR1 can be turned into the following fitness function (to be max-
imized):

−M loadImg img M loadImg img(()) (())2 1

This fitness function would guide the search towards input images
where the memory consumed by the source test case (large image) is
lower than the memory consumed by the follow-up test case (small
image), i.e. images that violate the PMR to the maximum possible ex-
tent, revealing potential defects.

3. Proof of concept

In this section, we present a proof of concept by studying the fea-
sibility of the approach in a realistic scenario.

3.1. Subject program

We used SPLAR [8], a popular tool for the automated analysis of
feature models, the de-facto standard for variability modelling in soft-
ware product lines. A feature model is a tree-like structure that re-
presents software products in terms of features (nodes) and constraints
among those features (edges) [9]. SPLAR takes a feature model as input,
translates it into a Boolean formula represented by a Binary Decision
Diagram (BDD), and uses an off-the-shelf BDD solver to extract in-
formation from the model, e.g. check model consistency.

3.2. Seeded fault

A key property of BDDs is that they provide fast analysis times, but
at the cost of memory usage and preprocessing time. SPLAR provides
two key parameters to control how the BDD is built, namely the initial
size of the table to store BDD nodes and the cache size, both set to 10K
by default. The size of the actual BDD strongly depends on the size of
the input feature model. Setting too high or too low values for these

Table 1
Execution times (ms) with random feature models.

Features Min Avg Max

100 0 1 21
150 0 4 2690
200 0 30 22,463

1 https://bugs.chromium.org/p/chromium/issues/detail?id=337425.

S. Segura et al. Information and Software Technology 98 (2018) 1–4

2

https://bugs.chromium.org/p/chromium/issues/detail?id=337425

Download English Version:

https://daneshyari.com/en/article/6948050

Download Persian Version:

https://daneshyari.com/article/6948050

Daneshyari.com

https://daneshyari.com/en/article/6948050
https://daneshyari.com/article/6948050
https://daneshyari.com

