
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A domain-specific language to visualize software evolution

Alison Fernandeza, Alexandre Bergel⁎,b

aUniversidad Mayor de San Simon, Bolivia
b Pleiad Lab, DCC, University of Chile, Chile

A R T I C L E I N F O

Keywords:
Git
History visualization
Domain-specific language

A B S T R A C T

Context: Accurately relating code authorship to commit frequency over multiple software revisions is a complex
task. Most of the navigation tools found in common source code versioning clients are often too rigid to for-
mulate specific queries and adequately present results of such queries. Questions related to evolution asked by
software engineers are therefore challenging at answering using common Git clients.
Objective: This paper explores the use of stacked adjacency matrices and a domain specific language to produce
tailored interactive visualizations for software evolution exploration. We are able to support some classical
software evolution tasks using short and concise scripts using our language.
Method: We propose a domain-specific language to stack adjacency matrices and produce scalable and inter-
active visualizations. Our language and visualizations are evaluated using two independent controlled experi-
ments and closely observing participants.
Results: We made the following findings: (i) participants are able to express sophisticated queries using our
domain-specific language and visualizations, (ii) participants perform better than GitHub’s visualizations to
answer a set of questions.
Conclusion: Our visual and scripting environment performs better than GitHub’s visualizations at extracting
software evolution information.

1. Introduction

Programming activities often require historical information from
source code. Consider the following two software evolution tasks [1]:
“Identify the two classes someone changed the most in the past days” and
“Identify the methods that someone else has also changed”. Both tasks are
likely to be asked by a developer in order to become familiar with
someone else’s work or to become aware of a team activity. It has been
shown that completing these particular two tasks requires dedicated
tooling and traditional code versioning systems are suboptimal in that
respect [1].

This paper presents and evaluates a visualization framework to
explore the evolution of a source code repository. Our approach is
based on two main ingredients: (i) a domain-specific language that
focuses on the notion of time, Git commit, and metric, and (ii) a visual
way to stack adjacency matrices. The language we have designed aims
to tailor visualizations in order to address particular questions related
to software evolution.

Executing a script in our domain-specific language produces an in-
teractive visualization. As a visual support, we employ MultiPile [2] as
a compact way to summarize and navigate through a set of matrices.

MultiPile was proposed as a visualization to explore temporal patterns
in dynamic graphs. It employs a natural and intuitive analogy of piling
adjacency matrices, each matrix representing a temporal snapshot.
MultiPile was designed to help neuroscientists. Our article is about
assessing MultiPile to solve software evolution problems.

Contributions. This paper makes the following contributions:

• We present GitMultipile, a domain-specific language coupled with
stacked adjacency matrices to produce interactive visualizations.

• We evaluate GitMultipile using two experiments: (i) a first con-
trolled experiment focusing on the expressiveness of our domain-
specific language, (ii) a second controlled experiment to compare
visualizations of GitMultipile against the ones of GitHub. For both
experiments, we observed and monitored the participant activities.

Findings. We made the following findings:

• The language offered by GitMultipile is more efficient than Excel at
retrieving data from a simple CSV sheet.

• Participants are more efficient at defining and using visualizations
with GitMultipile than using GitHub to answer a set of software

https://doi.org/10.1016/j.infsof.2018.01.005
Received 23 May 2017; Received in revised form 19 December 2017; Accepted 10 January 2018

⁎ Corresponding author.
E-mail address: abergel@dcc.uchile.cl (A. Bergel).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Fernandez Blanco, A., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.01.005

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.01.005
https://doi.org/10.1016/j.infsof.2018.01.005
mailto:abergel@dcc.uchile.cl
https://doi.org/10.1016/j.infsof.2018.01.005


evolution questions.

• By observing participants during our experiments, we identified
some obvious limitations of the navigation tools offered by GitHub.

Paper outline. Our paper is structured as follows:
Section 2 describes Multipile, the visual foundation used in our

work. Section 3 presents GitMultipile, our approach to assess Git-based
repositories using a domain-specific language and Multipile. Section 4
illustrates the use of GitMultipile on two large Git repositories.
Section 5 discusses the methodology we use to evaluate GitMultipile.
Section 6 evaluates the expressiveness of our language by using a
controlled experiment. Section 7 compares the visualization produced
by some participants against the visualizations of GitHub. Section 8 lists
some observations of our participants during their activity. Section 9
lists the threats to validity our work may be subject to. Section 10
presents the work related to this paper. Section 11 concludes and out-
lines our future work.

2. Background: stacking adjacency matrices

Matrix pile. Adjacency matrices are often used to visualize edges
between software related components [3–5]. Each element of a matrix
indicates whether two elements are related. A matrix is made of edge
weights. Fig. 1 gives three adjacency matrices. On this contrived ex-
ample, each matrix is squared and has a size of 4. Matrix 1, located on
the left, indicates that element B is connected to element D, while D is
connected to A and C to A. We assume that the three matrices represent
the evolution in time of the graph composed of the nodes A, B, C, and D.

A matrix pile, as proposed by Bach et al. [2], is a structure that
stacks adjacency matrices. A matrix pile is the superposition of stacked
adjacency matrices. All the matrices that belong to a same pile have the
same dimension and same object values for both axes.

Fig. 2 represents a piled matrix obtained from the three matrices
given in Fig. 1. A piled matrix is made of three distinct parts. Part 1 is a
matrix showing the superposition of the three matrices. This super-
position is called the “coverage matrix” and the weight of element Cij is
the average weight of the same cell in all the matrices:

∑= ⎛

⎝
⎜

⎞

⎠
⎟

=

C
T

M1
ij

n

T

ij
n

1

where Mn is a stacked matrix and T the number of stacked matrices.
Part 2 and Part 3, called top-preview and left-preview, respectively,

are a small visual summary of the piled matrices. The previews sum-
marize the content of the pile, each thin bar corresponding to a matrix.
The top-preview is made of three thin horizontal bars, each re-
presenting a piled matrix. The order of piled matrices goes from bottom
to top. Each horizontal bar has n parts, each summarizing a column and
n is the number of columns of the coverage matrix. The summary of a
part is obtained from the number of the weights greater than 0.
Similarly, the left preview summarizes each row of the piled matrices.

A preview is also a navigation widget: locating the mouse above a
stacked matrix summary (i.e., thin bar), has the effect to replace the
coverage matrix by the actual pointed matrix. Fig. 3 illustrates this
point: locating the mouse cursor on the top line in the preview replaces
the coverage matrix with Matrix 3, given in Fig. 2.

Two or more matrices can be piled to produce a pile matrix. Note
that the original definition of pile matrix [2] considers the coverage
matrix and the top preview (Part 1 and 2 of Fig. 2). We extended this
original definition with a left preview (Part 3).

Timeline. A visualization may be composed of several stacks of
matrices and some non-stacked matrices. A timeline represents a sum-
mary of the whole visualization and is also a way to navigate through
the different parts by highlighting parts related to the element in the
timeline pointed by the mouse.

Fig. 4 contains a timeline summarizing the three non-stacked ma-
trices. Each stacked and non-stacked matrix has an identifier, and this
identifier is used in the timeline to indicate the represented matrix.

Each vertical box of the timeline summarizes a matrix. The first
column, with the id 1, represents Matrix 1 given in Fig. 1. In that ma-
trix, the element A has two incoming edges (C and D), and D receives an

Fig. 1. Three adjacency matrices.

Fig. 2. A piled stack of matrices, obtained from the three matrices given in Fig. 1.

Fig. 3. The previews support navigation in a matrix stack.

Fig. 4. Timeline for the three non-stacked matrices given in Fig. 1.

A. Fernandez, A. Bergel Information and Software Technology xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6948059

Download Persian Version:

https://daneshyari.com/article/6948059

Daneshyari.com

https://daneshyari.com/en/article/6948059
https://daneshyari.com/article/6948059
https://daneshyari.com

