
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Synchronised visualisation of software process and product artefacts:
Concept, design and prototype implementation

Mujtaba Alshakhouri, Jim Buchan, Stephen G. MacDonell⁎

SERL, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand

A R T I C L E I N F O

Keywords:
Software visualisation
Conceptual visualisation
Software process
Conceptual design
Feature location
Traceability, locality

A B S T R A C T

Context: Most prior software visualisation (SV) research has focused primarily on making aspects of intangible
software product artefacts more evident. While undoubtedly useful, this focus has meant that software process
visualisation has received far less attention.
Objective: This paper presents Conceptual Visualisation, a novel SV approach that builds on the well-known
CodeCity metaphor by situating software code artefacts alongside their software development processes, in order
to link and synchronise these typically separate components.
Method: While the majority of prior SV research has focused on re-presenting what is already available in the
code (i.e., the implementation) or information derived from it (i.e., various metrics), the presented approach
instead makes the design concepts and original developers’ intentions – both significant sources of information in
terms of software development and maintenance – readily and contextually available in a visualisation en-
vironment that tightly integrates the code artefacts with their original functional requirements and development
activity.
Results: Our approach has been implemented in a prototype tool called ScrumCity with the proof of concept
being demonstrated using six real-world open source systems. A preliminary case study has further been carried
out with real world data.
Conclusion: Conceptual Visualisation, as implemented in ScrumCity, shows early promise in enabling developers
and managers (and potentially other stakeholders) to traverse and explore multiple aspects of software product
and process artefacts in a synchronised manner, achieving traceability between the two.

1. Introduction

In spite of its comparatively young age, the sub-field of Software
Visualisation (SV) has advanced rapidly during the past two decades,
with a proliferation of new research being published particularly during
the last fifteen years. Much of this research has been highly innovative.
Its value to the software engineering (SE) community — particularly in
promoting comprehension and awareness — has been substantial, and
the field has become well established in the research literature [1].

That said, the range of problems explored in recent SV research has
been limited. Not unexpectedly, software visualisation research has
been concerned with redressing the intangible nature of software, and
this has naturally led researchers to direct their attention toward vi-
sualising (aspects of) software product artefacts; by comparison, how-
ever, far less attention has been afforded to other facets of software
development. In fact, it could be argued that the three major categories
of SV that have shaped much of existing SV research, namely visuali-
sation of software static structure, visualisation of program runtime

behaviour, and visualisation of software evolution [2], have inad-
vertently played a role in limiting the field's growth and expansion in
considering other important aspects of software. It is our particular
contention that contemporary visualisation technologies have the po-
tential to also make visible numerous aspects of the software develop-
ment process that are equally disadvantaged by the intangible nature of
the end products (i.e., the software artefacts). Extending the benefits of
visualisation to important aspects of development is expected to con-
tribute in rendering these technologies as valuable for an even wider
range of software practitioners and practices.

Such concerns have been raised by researchers previously. For ex-
ample, Storey, Čubranić, and German, in their 2005 paper, called for
visualisation techniques that provide activity awareness [3]. Similarly,
Petre and de Quincey highlighted the need to represent design concepts
in software visualisation approaches in their 2006 paper [4]. Our re-
view of the recent literature (detailed below), however, shows that the
software development process is still not being addressed. While there
is SV research that highlights some effects of the software process on

https://doi.org/10.1016/j.infsof.2018.01.008
Received 29 May 2017; Received in revised form 15 January 2018; Accepted 19 January 2018

⁎ Corresponding author.
E-mail addresses: malshakh@aut.ac.nz (M. Alshakhouri), jim.buchan@aut.ac.nz (J. Buchan), stephen.macdonell@aut.ac.nz, stevemac@acm.org (S.G. MacDonell).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Alshakhouri, M., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.01.008

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.01.008
https://doi.org/10.1016/j.infsof.2018.01.008
mailto:malshakh@aut.ac.nz
mailto:jim.buchan@aut.ac.nz
mailto:stephen.macdonell@aut.ac.nz
mailto:stevemac@acm.org
https://doi.org/10.1016/j.infsof.2018.01.008


software artefacts, the majority of it is still directed to approaches and
techniques for visualising the product. It is our assertion that visualising
the software process in its own right not only has several potentially
beneficial implications for the software industry, but also the wider
stakeholder group. For example, from a cognitive perspective, visua-
lising processes in the context of software artefact structure, and vice
versa, could be important in terms of increasing stakeholder awareness
and understanding of both the processes and their implemented product
artefacts.

In this paper we address this untapped potential of the SV discipline
to benefit the software development process by introducing a novel
visualisation approach that firstly captures significant aspects of the
development process, in our case Scrum, and then tightly integrates and
synchronises these with the product artefacts that are created by it.
Inspired by the early work of Petre and de Quincey [4,5], we call this
new approach Conceptual Visualisation. The approach enables the visual
presentation of user requirements as well as developers’ design con-
cepts directly ‘over’ the visualisation scene, seamlessly linked to the
actual implementation of those concepts and requirements. It is ex-
pected that this new visualisation technique will better inform and
support several software tasks and activities, for example, concept lo-
cation. The approach should also bring software visualisation technol-
ogies closer to practitioners through a range of potential applications of
use by a variety of software stakeholders. Example applications include:
bidirectional requirements traceability, feature (or concept) searching,
development progress monitoring, support of group design reasoning,
and improved stakeholder communication. Section 6 provides some
concrete examples of such usage scenarios. A proof-of-concept proto-
type tool that implements this new visualisation concept has been de-
veloped in order to demonstrate its viability as well as to assess its
potential utility for practitioners.

The rest of this paper is structured as follows. Section 2 discusses the
status quo of the software development process in the SV literature to
situate the research in this paper. Section 3 reflects on prior literature
that has emphasized the need to equip visualisation techniques with a
more useful, or at least broader, set of information, and in doing so,
provides the context for introducing our Conceptual Visualisation ap-
proach. Section 4 presents our proposed visualisation technique and
describes its key technical details along with the major functional fea-
tures it facilitates. In Section 5 we cover the tool building and a proof of
concept demonstration of the new approach. A preliminary evaluation
is then presented in Section 6 followed by some reflections on the ap-
proach and its implications for practice in Section 7. Some final con-
cluding remarks are made in Section 8.

2. Software development processes in SV research

As noted in Section 1, the issue of SV research being confined to the
consideration of a relatively narrow range of SE aspects has been dis-
cussed from different perspectives in a range of prior research. How-
ever, it remains evident in recent literature that the response to such
discussions seems to have been rather sparse, with the majority of SV
research to date being primarily oriented toward re-presenting the
product and relatively little addressing the process. To the best of our
knowledge, only two forms of SV research address aspects of the soft-
ware process: a limited research stream on human activity awareness,
and, more recently, work on the visualisation of social network analysis.
Interestingly, this dearth of SV research into process appears to be
specific to the field of SE: Petre and de Quincey [4] note that in other
scientific and engineering disciplines, it is in fact the development process
that is primarily addressed by visualisation technologies. An explana-
tion for this limited treatment of the software process by the SV com-
munity compared to other domains could be that in these other do-
mains it is the process that is intangible, whereas in SE both the emergent
product and its development process are intangible.

While the application of SV to the software process has been rela-
tively minimal, it has been extensively applied to the software product.
Some researchers have gone as far as to suggest that there is currently
an abundance of techniques for visualising software artefacts them-
selves, but that there is a lack of techniques to address other important
aspects of software, or in the design of appropriate visual metaphors to
incorporate those aspects alongside the visualised artefacts [3]. It re-
mains that both the software static structure and software evolution
visualisation categories have rarely considered aspects of the software
development process. It is contended here that development processes
carry important information that is potentially valuable for various
software tasks but that are commonly not documented or have doc-
umentation that has no low-effort, straightforward mechanism for
software engineers to link to the source code. We address this with the
development of the new tool and approach described in this paper. To
the best of our knowledge, there is currently no single tool or approach
like this that considers the presentation of the software development
process as captured by design concepts in the context of the software
structure, and vice versa. This new approach we describe presents
software code artefacts alongside their development processes directly
in the visualisation scene.

In one of the first studies to raise the lack of attention to software
process in SV, Storey et al. [3] emphasize the need to promote human
activity awareness in SV tools, emphasizing its central importance to its
practical utility in answering many relevant questions for software
stakeholders. After exploring several SV tools, however, they concluded
that only a few offered reasonable support for human activity aware-
ness. In the years since, a handful of new approaches have appeared
that do indeed attempt to support some forms of activity awareness in
their visualisation techniques, most notably: Manhattan [6], StarGate
[7], code_swarm [8], and more recently, Replay [9]. Human activity,
however, is an effect of the actual development process. Soon after the
Storey et al. work appeared, Petre and de Quincey [4] signalled that it
was the missing development process that should be the focal point be-
hind promoting awareness, and referred to the elements of awareness
discussed by Storey and colleagues as being only ‘subtle’ aspects of
software awareness that are a consequence of attention to software
change.

Moreover, in examining the literature, it is evident that the tools
that have attempted to support activity awareness or have visualised
aspects of development have almost all relied primarily on information
extracted from IDEs and version control systems. This includes visua-
lisations via heatmaps [10], action graphs [11], and social network
analysis [12]. It is similarly evident, however, that the information
made available by such tools (and hence the knowledge that could be
represented) is limited in nature and is generally only commit-based
data. It does not capture design concepts and is confined instead to
modification activities. In fact, the authors of the Replay tool have
specifically stated that (p.755) “… the coarse-grained nature of the data
stored by commit-based software configuration management systems often
makes it challenging for a developer to search for an answer.” Another issue
common of these tools is that, apart from the Manhattan tool, they do
not present the extracted data in the context of the actual software
structure. From a cognitive perspective (discussed in the next section)
this additional functionality could play an important role in supporting
a range of software tasks [10].

We argue that by finding a mechanism to represent the core aspects
of the software development process within the context of software
structure visualisation, important questions that software engineers,
developers, managers, and customers (and possibly other stakeholders)
might pose could be more readily answered. This includes almost all the
activity awareness questions discussed previously [3,4] and that fun-
damentally revolve around authorship, rationale, time, and the ar-
tefacts themselves. The next section presents and discusses this me-
chanism.

M. Alshakhouri et al. Information and Software Technology xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6948061

Download Persian Version:

https://daneshyari.com/article/6948061

Daneshyari.com

https://daneshyari.com/en/article/6948061
https://daneshyari.com/article/6948061
https://daneshyari.com

